lnl

Object-Oriented Software
Construction

Bertrand Meyer

Lecture 21: Agents and tuples

Agents: the basic idea

Encapsulating routines in objects

agent r
agent r(x, ?, y)

Mechanism will first be illustrated through event-driven
programming

2 0O0SC - Summer Semester 2005 Chair of Software Engineering
<> ETH

Handling traditional input

Program drives input:
from
read_next_character
until /ast_character = Enterloop
(=7 +1
Result.put (last_character, i)

read _next _character
end

0O0SC - Summer Semester 2005

Chair of Software Engineering

Handling input with modern GUIs

User drives program:

When a user P eee e)
presses this L |)I |
button, execute - e

that action from i3 o
my program'’

o 13
B B (T
ry ~ N &
/ »
- »
&
‘E/

e

b

4 < Ll 00SC - Summer Semester 2005 Chair of Software Engineering

Event-driven programming

Publishers Subscribers

l .—vkouﬁne

T — %
AN

Routine

1 —
i

Routine

-
-

00SC - Summer Semester 2005 Chair of Software Engineering

° <> ETH

A solution: Observer Pattern

PUBLISHER >
attach

detach

" SUBSCRIBER update*

LIBCLASS > APPCLASS update+

* Deferred (abstract)

+ Effective (implemented)

‘ Inherits from
—» Client (uses)

6 < >| 0O0SC - Summer Semester 2005 Chair of Software Engineering

Observer pattern

Publisher keeps a list of observers:
subscribed . LINKED _LIST[OBSERVER]

To register itself, an observer may execute
subscribe (some_publisher)

where subscribe is defined in OBSERVER:.
subscribe (p: PUBLISHER) is
-- Make current object observe p.

require
publisher_exists: p /= Void
do
p.attach (Current)
end

00SC - Summer Semester 2005 Chair of Software Engineering

’ <> ETH

Attaching an observer

In class PUBLISHER:
attach (s: SUBSCRIBER) is
-- Register s as subscriber to current publisher.
require
subscriber_exists: p /= Void
do
subscribed.extend (s)

end
Note that invariant of PUBLISHER includes the clause

subscribed /= Void
(List subscribed is created by creation procedures of PUBLISHER)

8 0O0SC - Summer Semester 2005 Chair of Software Engineering
<> ETH

Triggering an event

triggeris PuBLISHER) ————(suBSCRIBER update*

-- Ask all observers to 7 detach 3
-- react to current event.

do

subscribed.start
until
subscribed.after
loop
subscribed.item. update
subscribed. forth
end

end

Each descendant of OBSERVER defines its own version of update

9 0O0SC - Summer Semester 2005 Chair of Software Engineering
<> ETH

Observer pattern

» Publishers know about subscribers
» Subscriber may subscribe to at most one publisher
> May subscribe at most one operation

» Not reusable — must be coded anew for each application

10 00SC - Summer Semester 2005 Chair of Software Engineering
<> ETH

Another approach: action-event table

2 TRAFFIC

SeT Of TP'pleS @ a®

| -

s ds cong

nnnnn

[Event, Context, Action]

Event: any occurrence we track
Example: a mouse click

Context: object for which the event is interesting
Example: a particular button

Action: what we want to do when the event occurs in the context
Example: save the file

Action-event table may be implemented as e.g. a hash table.

00SC - Summer Semester 2005 Chair of Software Engineering

" <> ETH

The EiffelVision style

my_button. click.action_Jist.extend (agent my_procedure)

12 00SC - Summer Semester 2005 Chair of Software Engineering
<> ETH

Mechanisms in other languages

C and C++: "function pointers”

C#: delegates (more limited form of agents)

13 00SC - Summer Semester 2005 Chair of Software Engineering
ald ETH

With .NET delegates: publisher (1)

P1. Introduce new class ClickArgs inheriting from EventArgs,
repeating arguments types of myProcedure:

public class Clickargs {... int x, y; ...}

P2. Introduce new type ClickDelegate (delegate type) based on
that class

public void delegate ClickDelegate (Object sender, e)

P3. Declare new type Click (event type) based on the type
ClickDelegate:

public event ClickDelegate Click

00SC - Summer Semester 2005 Chair of Software Engineering

14 <> ETH

With .NET delegates: publisher (2)

P4. Write new procedure OnClick to wrap handling:
protected void OnClick (int x, int y)
{if (Click = null) {Click (this, x, y)}}

P5. For every event occurrence, create new object (instance of
ClickArgs), passing arguments to constructor:

ClickArgs myClickargs = new Clickargs (h, v)

P6. For every event occurrence, trigger event:
OnClick (myclickargs)

00SC - Summer Semester 2005 Chair of Software Engineering

15 <> ETH

With .NET delegates: subscriber

D1. Declare a delegate myDelegate of type ClickDelegate.
(Usually combined with following step.)

D2. Instantiate it with myProcedure as argument:

ClickDelegate = new ClickDelegate (myProcedure)

D3. Add it to the delegate list for the event:
YES_button.Click += myDelegate

00SC - Summer Semester 2005 Chair of Software Engineering

0 <> ETH

Using the Eiffel approach

Event: each event type will be an object
Example: mouse clicks

Context: an object, usually representing element of user
interface
Example: a particular button

Action: an agent representing a routine
Example: routine to save the file

00SC - Summer Semester 2005 Chair of Software Engineering

K ald ETH

The EiffelVision style

YES_button.click.action_list.extend (agent my_procedure)

18 OO0SC - Summer Semester 2005 Chair of Software Engineering
<> ETH

Event Library style

The basic class is EVENT _TYPE
On the publisher side, e.qg. GUI library:

» (Once) declare event type:
click: EVENT_TYPE [TUPLE[INTEGER, INTEGER]]
» (Once) create event type object:
create click
» To trigger one occurrence of the event:
click.publish ([x_coordinate, y._coordinate])
On the subscriber side, e.g. an application:

click.subscribe (agent my_procedure)

19 0O0SC - Summer Semester 2005 Chair of Software Engineering
<> ETH

Subscriber variants

click.subscribe (agent my_procedure)

my_button. click.subscribe (agent my_procedure)

click.subscribe (agent your procedure (a, ?, ?, b))

click.subscribe (agent other_object.other_procedure)

00SC - Summer Semester 2005 Chair of Software Engineering

20 ald ETH

Another example of using agents

b
_‘- my_function (x) dx
a

b
J' your_function (x, u, v) dx
a

my_integrator.integral (agent my_function , a, b)

my_integrator.integral (agent your_function (?, u, v), a, b)

21 00SC - Summer Semester 2005 Chair of Software Engineering
<> ETH

Applications of agents

» Undo-redo

» Iteration

» High-level contracts

» Numerical programming

» Introspection (finding out properties of the program
itself)

29 00SC - Summer Semester 2005 Chair of Software Engineering
<p>| ETH

Using an iterator

all_positive .= my_integer_/list. for_all

(agent /s _positive (?))

23 0O0SC - Summer Semester 2005 Chair of Software Engineering
<> ETH

Iterators

In class LINEAR [&], ancestor to all classes for lists,
sequences eftc., you will find:

for _all
there exists
do_all

do if
do_while
do_unti/

00SC - Summer Semester 2005 Chair of Software Engineering

= <> ETH

Calling the associated routine

Given an agent, you may call the associated routine
through the feature "call' :

a.call ([horizontal_position, vertical_position])

S

‘A tuple

If ais associated with a function, a./tem ([..., ...1)
gives the result of applying the function.

o5 0O0SC - Summer Semester 2005 Chair of Software Engineering
<> ETH

The integration function

integral (f: FUNCTION [ANY, TUPLE[REAL], REAL];
fow, high: REAL): REAL is
-- Integral of Fover the interval [fow, Aigh]

local
x: REAL, i: INTEGER
do
from x := Jow until x > high loop

Result := Result + sfep + f.rtem ([x])
[=7+ 1

X:=a+i* step _—

end
end

a b

26 00SC - Summer Semester 2005 Chair of Software Engineering
<> ETH

Behind agents: Tuples

Tuple types (for any types A4, B, C, ...):
TUPLE
TUPLE[A]
TUPLE A, B]
TUPLE (A, B, C]

A tuple of type TUPLE[A, B, C] is a sequence of at least
three values, first of type A, second of type B, third of
type €

Tuple values: e.g. [aZ, b1, c]]

00SC - Summer Semester 2005 Chair of Software Engineering

27 <> ETH

Tuple type inheritance

TUPLEA, B]

00SC - Summer Semester 2005 Chair of Software Engineering

% <> ETH

Accessing and modifying tuple elements

To obtain /~th element of a tuple?, use
t.item (/)

May need assignment attempt:
x?= t.item (/)

To change i~th element, use t.put (x, 1)

29 00SC - Summer Semester 2005 Chair of Software Engineering
<> ETH

Agents and their arguments

An agent can have both "closed” and "open” arguments

Closed arguments set at time of agent definition; open
arguments set at time of each call.

To keep an argument open, just replace it by a question mark:

v:= agent a0.f (al, a2, a3) -- All closed (as before)
w = agent a0.f (al, a2, ?)
x = agent a0.f (al, ?, a3)
y = agent a0.f (al,?,?)

z:=agent a0.7(?,2,?)

00SC - Summer Semester 2005 Chair of Software Engineering
ETH

30 <>|

Calling an agent with arguments

f(xI. TI x2. T2, x3: T3)
aC C al TI, a2 T2. a3 T3

v:= agent a0.f (al, a2, a3) u.call ([])

v.call ([a3))

v.= agent a0.f (al, a2,?)

w.call ([a2))

w = agent a0.f (al,?, a3)

x.call ([a2, a3])

x = agent a0.f (al,?,?)

y.call ([a1, a2, a3])

y:=agent a0.7(?,?,?)

00SC - Summer Semester 2005 Chair of Software Engineering
ETH

31 4>|

EiffelBase classes representing agents

call - * deferred
\ + effective
I
PROCEDURE item
32 < >| 00SC - Summer Semester 2005 Chair of Software Engineering

Agent types

ROUTINE [BASE, ARGS —> TUPLE]
PROCEDURE [BASE, ARGS —> TUPLE]

FUNCTION [BASE, ARGS —> TUPLE, RESTYPE]

33 00SC - Summer Semester 2005 Chair of Software Engineering
<> ETH

Declaring an agent

p: PROCEDURE [ANY, TUPLE]

-- Agent representing a procedure,
-- ho open arguments

g: PROCEDURE [ANY, TUPLE X, ¥, Z]]

-- Agent representing a procedure,
-- 3 open arguments

f: FUNCTION[ANY, TUPLE(X, Y, Z], RES]

-- Agent representing a procedure,
-- 3 open arguments, result of type RES

34 0O0SC - Summer Semester 2005 Chair of Software Engineering
<> ETH

Calling an agent with arguments

f(xl TI x2 T2 x3: T3), declared in class B

a0. C al: T1. a2 T2 a3 T3

v:= agent a0.f (al, a2, a3) PROCEDURE [B, TUPLE[]]

u.call ([])

v:.= agent a0.f (al, a2,?) PROCEDURE [B, TUPLE [T3]]

v.call ([a3])

w .= agent aO0. f(al ?, a3 PROCEDURE [B, TUPLE [T2]]

w.call ([aZ2])

x = agent a0.f(al,?,?) |PROCEDURE[B, TUPLE[T2, T3]

x.call ([a2, a3])

y=agent a0.7(?,?,?) [pROCEDURE [B, TUPLE[T1, T2, T3]

y.call ([a1, a2, aJ))

0O0SC - Summer Semester 2005

35 <>|

Chair of Software Engineering

Making the target open

Open or closed
arguments
agent { TARGET_TYPE}.f(...)
36 < >| 00SC - Summer Semester 2005 Chair of Software Engineering

Iterating on the target or the arguments

Procedures in class COMPANY:

> downgrade -- No argument
> record_value (val: REAL, d: DATE) -- Two arguments
Then with

companies. LIST [COMPANY]
values. LIST[REAL]
some_company. COMPANY

you may use both:

companies.do_all (agent { COMPANY}. downgrade}

values.do_all (agent my_company.record value (?, Today))

37 < >| 00SC - Summer Semester 2005 Chair of Software Engineering

38

<p>|

End of lecture 21

0OO0OSC - Summer Semester 2005

Chair of Software Engineering

