
rubik Reference Manual
Version 0.0.7

Generated by Doxygen 1.2.12

Wed Jan 23 17:53:15 2002

Contents

1 rubik Hierarchical Index 1

1.1 rubik Class Hierarchy. 1

2 rubik Compound Index 3

2.1 rubik Compound List. 3

3 rubik Class Documentation 5

3.1 commandoptions Class Reference. 5

3.2 commandoptionserror Class Reference. 9

3.3 RoundedCube Class Reference. 10

3.4 RubiksCube Class Reference. 12

Chapter 1

rubik Hierarchical Index

1.1 rubik Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

commandoptions .5
commandoptions::updater< std::string>
commandoptionserror . 9
RoundedCube .10
RubiksCube .12

2 rubik Hierarchical Index

Generated on Wed Jan 23 17:53:16 2002 for rubik by Doxygen written by Dimitri van Heeschc© 1997-2001

Chapter 2

rubik Compound Index

2.1 rubik Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:

commandoptions(A class for parsing command line options)5
commandoptionserror(An exception class) . 9
RoundedCube(Models a cube with rounded edges) .10
RubiksCube(A Rubik’s Cube) .12

4 rubik Compound Index

Generated on Wed Jan 23 17:53:16 2002 for rubik by Doxygen written by Dimitri van Heeschc© 1997-2001

Chapter 3

rubik Class Documentation

3.1 commandoptions Class Reference

A class for parsing command line options.

#include <commandoptions.h >

Public Methods

• template<typename T> void registeroption (T &par, std::string longname, char shortname,
std::string des, std::string argname)

Register an option with a reference to a variable.

• void registerflag (bool &par, std::string longname, char shortname, std::string des)

Register a flag with a reference to abool variable.

• template<typename T> void registerargument(T &par, std::string name, std::string des)

Register a mandatory argument with a reference to a variable.

• void processcommandline (int argc, const char∗argv[])

Process the arguments, options, and flags on the command line.

• ∼commandoptions()

Cleans dynamically allocated stuff up.

3.1.1 Detailed Description

A class for parsing command line options.

By using this class, you wont have to redo the tedious task of making a command line parser every time
you need one.

The command line is parsed and checked for errors. An exception will be thrown in any of these circum-
stances:

• an unrecognizable option or flag was encountered.

6 rubik Class Documentation

• the argument to an option could not be parsed. This means that an exception is thrown, if the type
of the argument doesn’t match the type of the variable bound to the argument. This is determined by
using the<< operator.

• too many or too few arguments are given.
• several options are put into one group. The rule is, that there can only be one option per group, as

each option requires an argument. If-f is an option that requires a filename (most likely astring
), and-n also is an option, then the following command line will makecommandoptions throw
an exception:
$ my_program -fn filename

• an option is used without an argument.
• a single dash is found without a trailing character. Also, if two dashes are found without the name of

a long option or long flag. This means thatcommandoptions currentlydoesn’tfollow the GNU
style, which treats everything following two consecutive dashes arguments.

Here is a little program that demonstrates the use ofcommandoptions :

We start by including the standard IO stream library (which is needed by our program and not by
commandoptions) and thecommandoptions header:

#include <iostream>
#include "commandoptions"

We can now start ourmain function and decleare ourcommandoptions object:

int main(int argc, const char *argv[]) {
commandoptions c;

Our little program has a number of variables that the user can control. These variables are declared next:

bool beep = false;
int no_of_hits = 3;
std::string boink_sound = "*boink*";
std::string ouch_sound = "*ouch*";
std::string victim;

Now that the variables have been declared and initialised, we can register them with our
commandoptions object:

c.register_flag(beep, "beep", ’b’, "Turn on beeping");
c.register_option(no_of_hits, "hits", ’h’, "How many times to hit victim", "NUMBER");
c.register_option(boink_sound, "", ’s’, "How hitting victim sounds", "SOUND");
c.register_option(ouch_sound, "help-cry", ’\0’, "Victim response", "SOUND");
c.register_argument(victim, "victim", "");

We can now try to parse the command line. Since this might fail, we use atry block:

try {
c.process_command_line(argc, argv);

If the parsing fails, acommandoptions error object will be thrown, and we will end up in thecatch
block. The error-object has acommandoptions error::what method that we use to get an explaina-
tion of the error:

} catch (commandoptions_error &ex) {
std::cerr << "Error: " << ex.what() << endl;

Generated on Wed Jan 23 17:53:16 2002 for rubik by Doxygen written by Dimitri van Heeschc© 1997-2001

3.1 commandoptions Class Reference 7

The program should now terminate with a non-zero exitcode to indicate that an error has occured:

return 1;
}

If everything went well, then we can start using the variables we declared previously. They will be updated
to reflect the arguments given by the user on the command line. The rest of the code is:

if (no_of_hits > 0) {
std::cout << "Now hitting " << victim << ’ ’

<< no_of_hits << " times:" << std::endl;
for (int i = 0; i < no_of_hits; ++i)

std::cout << boink_sound << ’ ’ << ouch_sound << std::endl;
}
if (beep)

std::cout << "*beep*" << std::endl;
}

3.1.2 Member Function Documentation

3.1.2.1 void commandoptions::processcommand line (int argc, const char∗ argv[])

Process the arguments, options, and flags on the command line.

You should call this method after you have registered your arguments, options, and flags with the object.

See also:
registerargument, registeroption, andregisterflag.

3.1.2.2 template<typename T> void commandoptions::registerargument (T & par, std::string
name, std::string des) [inline]

Register a mandatory argument with a reference to a variable.

The variable will be updated with the value found on the command line.

Parameters:
par the variable to update. The variable is tied to the flag, and it will be updated when process-

commandline is called. This is done with the help of>> which means that you can make your
program accept a vector as an argument, if you have implemented theoperator >> method in
your vectorclass.

des the description of the argument. The description will be part of the help displayed when the
program in invoed with the--help option. It will be placed after the long and short name, so it
should be no longer than one line.

3.1.2.3 void commandoptions::registerflag (bool & par, std::string long name, char short name,
std::string des) [inline]

Register a flag with a reference to abool variable.

The variable will be inverted if the flag is found on the command line. This means that you should give the
variable a suitable default value before you call processcommandline. If the flag is present more than one
time on the command line, it will be parsed as if only occuredonce.

Generated on Wed Jan 23 17:53:16 2002 for rubik by Doxygen written by Dimitri van Heeschc© 1997-2001

8 rubik Class Documentation

Parameters:
par the variable to update. The variable is tied to the flag, and it will be updated when process-

commandline is called.

long name the long name of the flag. The user can then toggle the flag by invoking the program with
--long name. The long name will be part of the help displayed when the user invokes the
program with--help as an option.

short name the short name for the flag. This is a singlechar . The user can then toggle the flag by
invoking the program with-short name. The short name will be part of the help displayed
when the program is invoked with the--help option.

des the description of the flag. The description will be part of the help displayed when the program in
invoed with the--help option. It will be placed after the long and short name, so it should be
no longer than one line.

3.1.2.4 template<typename T> void commandoptions::registeroption (T & par, std::string
long name, char short name, std::string des, std::string arg name) [inline]

Register an option with a reference to a variable.

The variable will be updated with the argument on the command line.

Parameters:
par the variable to update. The variable is tied to the option, and it will be updated when process-

commandline is called.

long name the long name of the option. The user can then enable the option by invoking the program
with --long name. The long name will be part of the help displayed when the user invokes
the program with--help as an option.

short name the short name for the option. This is a singlechar . The user can then enable the option
by invoking the program with-short name. The short name will be part of the help displayed
when the program is invoked with the--help option.

des the description of the option. The description will be part of the help displayed when the program
in invoed with the--help option. It will be placed after the long and short name, so it should
be no longer than one line.

arg name the name of the option. This will be part of the help displayed when the program is invoked
with the-h or - ? options.

The documentation for this class was generated from the following files:

• commandoptions.h
• commandoptions.cpp

Generated on Wed Jan 23 17:53:16 2002 for rubik by Doxygen written by Dimitri van Heeschc© 1997-2001

3.2 commandoptionserror Class Reference 9

3.2 commandoptionserror Class Reference

An exception class.

#include <commandoptions.h >

Public Methods

• commandoptionserror(std::string s) throw ()

Constructs a new error.

• ∼commandoptionserror() throw ()

Does nothing?

• virtual const char∗ what() const throw ()

Returns the errormessage.

3.2.1 Detailed Description

An exception class.

3.2.2 Constructor & Destructor Documentation

3.2.2.1 commandoptionserror::commandoptions error (std::string s) throw () [inline]

Constructs a new error.

Parameters:
s the errormessage.

The documentation for this class was generated from the following file:

• commandoptions.h

Generated on Wed Jan 23 17:53:16 2002 for rubik by Doxygen written by Dimitri van Heeschc© 1997-2001

10 rubik Class Documentation

3.3 RoundedCube Class Reference

Models a cube with rounded edges.

#include <RoundedCube.h >

Public Types

• enumaxis{ Xaxis, Yaxis, Zaxis }
The x-, y-, and z-axis.

Public Methods

• RoundedCube(float s length=0.8, float rwidth=0.1, int rsteps=2)

Constructs a cube with rounded edges.

• void render()

Draws the cube.

• void rotate(axisa, bool direction)

Rotates the cube 90 degrees.

Public Attributes

• booldraw normals

Should normals be drawn? This should only be set totrue , if you’re debugging.

3.3.1 Detailed Description

Models a cube with rounded edges.

The cube will be made up of six squares with rounded edges in-between. The sides will be red, green, blue,
orange, yellow, and white just as the original Rubik’s Cube. They will only reflect little of the specular
light that shines on them, but they will reflect all the diffuse light.

The rounded edges will be black, but will have more intense highlights than the sides. This gives a nice
shiny effect when the cube rotates in front of a light.

3.3.2 Constructor & Destructor Documentation

3.3.2.1 RoundedCube::RoundedCube (floats length= 0.8, floatr width = 0.1, int r steps= 2)

Constructs a cube with rounded edges.

Parameters:
s length the length of the sides. This is only the length of the squares. To get the total

width/height/depth of the cube, you’ll have to add two timesr widthas well.

Generated on Wed Jan 23 17:53:16 2002 for rubik by Doxygen written by Dimitri van Heeschc© 1997-2001

3.3 RoundedCube Class Reference 11

r width the width of the roundings.

r steps the number of steps used to do the rounded edges. The edges will consist ofr stepsrectangles
— the larger the number, the finer the edge.

3.3.3 Member Function Documentation

3.3.3.1 void RoundedCube::render ()

Draws the cube.

The cube will be drawn centered around (0, 0).

3.3.3.2 void RoundedCube::rotate (axisa, bool direction)

Rotates the cube 90 degrees.

The cube will rotate by changing the color of the sides.

Parameters:
a the axis to rotate around. The axis are local to the cube.

direction if direction is true , then the cube will be rotated clockwise, otherwise it will be rotated
counter-clockwise.

The documentation for this class was generated from the following files:

• RoundedCube.h
• RoundedCube.cpp

Generated on Wed Jan 23 17:53:16 2002 for rubik by Doxygen written by Dimitri van Heeschc© 1997-2001

12 rubik Class Documentation

3.4 RubiksCube Class Reference

A Rubik’s Cube.

#include <RubiksCube.h >

Collaboration diagram for RubiksCube:

RubiksCube

RoundedCube

cubes

Public Methods

• RubiksCube()

The constructor.

• ∼RubiksCube()

Destructs the 27 cubes.

• void render()

Renders the cubes.

• void rotateX(unsigned int block, int degrees)

Rotates the designated block around the x-axis.

• void rotateY(unsigned int block, int degrees)

Rotates the designated block around the y-axis.

• void rotateZ(unsigned int block, int degrees)

Rotates the designated block around the z-axis.

3.4.1 Detailed Description

A Rubik’s Cube.

This class manages the 27 cubes that make up a Rubik’s Cube.

3.4.2 Constructor & Destructor Documentation

3.4.2.1 RubiksCube::RubiksCube ()

The constructor.

Memory will be allocated for the 27 cubes.

Generated on Wed Jan 23 17:53:16 2002 for rubik by Doxygen written by Dimitri van Heeschc© 1997-2001

3.4 RubiksCube Class Reference 13

3.4.3 Member Function Documentation

3.4.3.1 void RubiksCube::render ()

Renders the cubes.

This will make the necessary calls to OpenGL to render the 27 cubes. You shouldn’t callrender() between
calls to glBegin() ... glEnd().

The documentation for this class was generated from the following files:

• RubiksCube.h
• RubiksCube.cpp

Generated on Wed Jan 23 17:53:16 2002 for rubik by Doxygen written by Dimitri van Heeschc© 1997-2001

Index

∼RubiksCube
RubiksCube,12

∼commandoptions
commandoptions,5

∼commandoptionserror
commandoptionserror,9

commandoptions,5
∼commandoptions,5
processcommandline, 7
registerargument,7
registerflag,7
registeroption,8

commandoptionserror,9
∼commandoptionserror,9
commandoptionserror,9
what,9

draw normals
RoundedCube,10

processcommandline
commandoptions,7

registerargument
commandoptions,7

registerflag
commandoptions,7

registeroption
commandoptions,8

render
RoundedCube,11
RubiksCube,13

rotate
RoundedCube,11

rotateX
RubiksCube,12

rotateY
RubiksCube,12

rotateZ
RubiksCube,12

RoundedCube
draw normals,10
RoundedCube,10

RoundedCube,10

render,11
rotate,11
RoundedCube,10

RubiksCube
∼RubiksCube,12
rotateX,12
rotateY,12
rotateZ,12
RubiksCube,12

RubiksCube,12
render,13
RubiksCube,12

what
commandoptionserror,9

	rubik Hierarchical Index
	rubik Class Hierarchy

	rubik Compound Index
	rubik Compound List

	rubik Class Documentation
	commandoptions Class Reference
	commandoptions_error Class Reference
	RoundedCube Class Reference
	RubiksCube Class Reference

