Object Spyglass Developer’s Guide

Peter Brandt Martin Geisler

Object Oriented Software Construction
Summer Semester 2005

Contents

1 Introduction

2 Architectural Overview
2.1 The Testing Framework
2.1.1 The Test Driver and Test Cases.
2.1.2 The StateManager
2.2 The Object Spyglass

3 The Testing Framework
3.1 The Test Driver and TestCases
3.1.1 Writing TestCases. v v v,
3.1.2 Executing TestCases uuueen..
3.1.3 TestDriver i
3.1.4 Implementation of the Test Case and Test Driver . .
3.2 TheStateManagero i vt ittt e ..
3.2.1 Saving the State Conditionally
3.2.2 The Saved State Inspector
3.2.3 Implementation of the State Manager

4 The Object Spyglass
4.1 Output of the Object Spyglass
4.2 Implementation of the Object Spyglass

5 Possible Extentions
5.1 Hierarchical Grouping of TestCases
5.2 Interactive Graphical Object Spyglass
5.3 Multiple Concurrent Output Channels.

6 Conclusion
6.1 Highlights
6.2 Limitations & i i i i e e e e

1 Introduction

This guide explains how the Testing Framework and the accompanying
Object Spyglass tool are used from the viewpoint of developers. Normal
users are referred to the Object Spyglass User’s Guide.

The target audience of developers can be reasonably divided into two
groups: reusable component developers and software testers. The com-
ponent developers only have to deal with a subset of the functionality in
the Testing Framework (the State Manager to be precise), while the soft-
ware testers make use of the Testing Framework for writing Test Cases
and the Object Spyglass tool for inspecting the results of running such
tests.

This guide has the following layout:

e First the overall architecture of the system and the main concepts
used in the rest of the guide are introduced. Both component devel-
opers and software testers should be familiarize themselves with
this section.

e The Testing Framework is then described in detail. The functional-
ity is divided into two parts of interest to different audiences:

- The Test Driver and Test Cases: this is the domain of the soft-
ware testers. How to write Test Cases and how to integrate
them using the Test Driver is explained.

- The State Manager: the component developers should use it
in their components to facilitate better debugging by the soft-
ware testers. This section demonstrate how libraries can be
instrumented with calls to the State Manager in an unobtru-
sive way.

e The Object Spyglass component is then presented, along with a
description of how it works and how it is used.

e The Testing Framework and Object Spyglass component are al-
ready quite functional as presented here, but one might still wish
to change and extend them. This section discusses some possible
extensions.

e A conclusion which describes the highlights and limitation of our
system.

2 Architectural Overview

This section introduces the main concepts and classes used in the Test-
ing Framework and in the Object Spyglass. The definitions given here
are the basis for the rest of this document.

2.1 The Testing Framework

The first major part in our system is the Testing Framework. Software
testers will be particularly interested in the functionality of the Test
Cases and Test Diver, whereas component developers will be interested
in the facility for saving state through the State Manager.

2.1.1 The Test Driver and Test Cases

The most basic component in the Testing Framework is the Test Case,
realized by the TEST_CASE class. This is also the most important class
for the software testers.

The job of a test case is to exercise some code in a controlled envi-
ronment, seeking to trigger bugs. For our purposes a bug is defined as a
contract violation.

The execution of the test cases is supervised by a Test Driver — an in-
stance of the TEST_DRIVER class. Test Cases are added to an instance of
this class and when executed the Test Driver keeps track of the number
of passed and failed tests.

2.1.2 The State Manager

The component developers can aid the software testers by having the
libraries and components save their state at regular intervals. This is
done with by calling the State Manager which maintain a list of Saved
States.

After having collected a number of Saved States one can examine
them using the Object Spyglass. This functionality is implemented by
the Saved State Inspector which is a client of the Object Spyglass.

2.2 The Object Spyglass

The Object Spyglass is the second major component in our system. It
has the task of showing the structure of an object — it must be able to
deal with arbitrarily complex objects, including objects with cycles and
self-references.

The structure of an object given to the Object Spyglass is shown as a
tree, with the object at the root. The nodes in the tree correspond to the
fields of the objects.

The Object Spyglass is a separate component that can be reused in
many different contexts, and it does not depend on the Testing Frame-
work in any way.

3 The Testing Framework

This section describes the classes in the Testing Framework and their
use. As explained in the introduction, the first section about Test Cases
and the Test Driver targets software testers, while the second section
about the State Manager targets component developers.

3.1 The Test Driver and Test Cases

The most basic part of the Testing Framework is the Test Case. Below is
a discussion of how to write Test Cases, and how to create a test suite
using the Test Driver.

3.1.1 Writing Test Cases

Writing test cases with our Testing Framework is meant to be as easy as
possible, requiring a minimal amount of “glue code”. Writing a test case
consists of two steps:

1. Making a class which inherits from TEST_CASE.

2. Effecting the deferred procedure execute_test.

The execute_test procedure is called whenever the test case is exe-
cuted, and should contain the actual test code. The test code is free to
do whatever is needed for initializing a proper test environment. The
test case should create instances of the class under test, and test its
functionality thoroughly. A simple example testing an ACCOUNT class
could look like this:

class
ACCOUNT_WITHDRAW_TC

inherit
TEST_CASE

feature -- Basic operations

execute_test is
-- Test withdraw in ACCOUNT
local
account: ACCOUNT
do
create account.make (42)
account.withdraw (42)
end

end -- class ACCOUNT_WITHDRAW_TC

Here the execute_test procedure simply declares a local variable of
type ACCOUNT, creates the object with an initial balance of 42 and then
tries to withdraw 42 from it. Because the Testing Framework relies on
contract violations to signal bugs this is all the code that is necessary in
the test case.

3.1.2 Executing Test Cases

A Test Case can be executed by calling its execute procedure. Note that
one cannot call the execute_test directly — the execute procedure is
there to wrap the execute_test procedure, in particular it deals with any
exception that might be produced by running execute_test.

After a Test Case has been executed one can obtain information
about the result using the has_failed query. If set, then the execution of
execute_test caused an assertion violation, which is stored for inspection
in the exception query. Other information about the exception can be ob-
tained by the class_name and routine_name queries contain the name of
the class and routine in which the exception was raised. The tag_name
query gives the tag associated with the violated assertion clause.

3.1.3 Test Driver

Normally one does not just execute a single Test Case, but a number of
them in conjunction with a Test Driver. The TEST_DRIVER class itself
does not produce any output, but contains the core functionality of a
Test Driver. The GRAPHICAL_TEST_DRIVER and CONSOLE_TEST_DRIVER
classes are two examples that use facility inheritence from TEST_DRIVER,
and implement different output channels for testing information.

The TEST_DRIVER class has a simple interface with a add_test_case
procedure used to register a TEST_CASE object and an execute procedure
used to execute all registered Test Cases. During the execution of the
tests the Test Driver provides the number of passed and failed tests
through the queries passed and failed.

The easiest way to use a Test Driver is construct a class that inherits
from TEST_DRIVER and implements a creation procedure that does the
following:

e Calls the make creation procedure of TEST_DRIVER,
e Adds Test Cases to run using add_test_case,

¢ And finally calls execute.

The TEST_DRIVER class also has support for calling an agent after
each TEST_CASE has been executed — this is used by the GRAPHICAL_
TEST_DRIVER class to ensure that the user interfaces is updated while
the tests are being executed, and by the CONSOLE_TEST_DRIVER to out-
put textual information about the tests. This functionality is imple-
mented using an ACTION_SEQUENCE, available through the test_executed_
actions feature.

3.1.4 Implementation of the Test Case and Test Driver

Test Cases need access to internal object information and to information
about assertion violations, and thus TEST_CASE use facility inheritance
from EXCEPTIONS and INTERNAL to gain access to those features.

The TEST_CASE class is itself a deferred class that, at its most basic
level, is a wrapper for the code under test which is to be implemented in
the deferred procedure execute_test.

The execute_test procedure is called when the Test Case is executed
by a call to execute. Before the call to execute_test the Saved_states list
in STATE_MANAGER is wiped out so that it will only contain Saved States
related to the current Test Case when the call to execute_test returns.

The execute_test call might produce an exception, and if so this is
recorded in the rescue clause. A retry sends the execution back in the
body, where the execution of the test code will be skipped, and any Saved
States are stored away for later inspection.

TEST_DRIVER is implemented as primarily a list of TEST _CASEs test_
cases, which the procedure add_test_case adds to. To trigger the execu-
tion of all added Test Cases, simply call the procedure execute.

There are also ACTION_SEQUENCESs execute_started_actions, execute_
finished_actions, and test_executed_actions. They are run before the
tests are executed, after the tests are executed, and after each executed
Test Case respectively. In the TEST_DRIVER class these lists are empty,
and thus TEST_DRIVER itself produces no output; it simply provides
a facility for running tests. The intention is that classes that inherit
from TEST_DRIVER such as GRAPHICAL_TEST_DRIVER be constructed,
that create output by adding to the ACTION_SEQUENCEs. In this way,

6

the core functionality that a Test Driver should exhibit is separated from
implementing output channels.

3.2 The State Manager

To aid debugging one should have libraries save their state regularly dur-

ing execution. An excellent way to implement this is to save the state of

execution at the beginning of every routine. Saving state is accomplished

with a State Manager, implemented with the STATE_MANAGER class.
The state of the system is defined as the following:

e The Current object. This is the active object at the point in time
when the State Manager is invoked to save the state.

e The name of the current routine. This is just a label (a STRING)
supplied by the writer of the code.

e Any routine arguments. This is a TUPLE of variables.

To store these three things one makes a call to save_state in STATE_
MANAGER. The interface in STATE_MANAGER has been designed to be as
simple as possible, so this is all that is needed: a single call to a single
routine. This can be done in a single line:

(create {STATE_MANAGER}) .save_state (Current, "name", [a, b])

Note that it is possible to use the STATE_MANAGER class to store
other data than the current object, routine name, and routine arguments.
This is beyond the scope of the project, but deserves mention because it
may be useful to store intermediate state when debugging very compli-
cated algorithms.

3.2.1 Saving the State Conditionally

Having each call to a routine result in a SAVED_STATE object being cre-
ated with a copy of the arguments and the current object would be un-
necessary and probably much too expensive for an application once it is
being put into production use. Luckily, Eiffel provides a simple solution:
wrap the calls to the State Manager in debug clauses. The call to the
State Manager thus becomes:

debug ("foo_save_states")
(create {STATE_MANAGER}) .save_state (Current, "name", [a, b])
end

One then has to enable the debug clauses in the . ace file by inserting
the following line in the default clause:

debug ("foo_save_states")

When the library is used in a production system one only has to dis-
able the debug statements in the .ace file. By consistently using the
same tag throughout a library (like “foo_save_states” for a library called
“f00”) the users of the library can choose to disable just the debug state-
ments they want. However, even if all debug statements involving the
State Manager are disabled, the Testing Framework still needs to be in-
cluded in the project for compilation.

So, by using this technique one can equip a library with calls to the
State Manager without having to fear any run-time consequences in the
production system, and there is no need for multiple versions of the
same code. Creating and using the STATE_MANAGER object all in one
line one also avoids having to introduce a new local variable — those
three lines are fully self-contained and their presence cannot introduce
any new bugs.

3.2.2 The Saved State Inspector

The saved states are explored using the Saved State Inspector, which in
turn uses the Object Spyglass to recursively display the routine argu-
ments and objects in the saved states. The Saved State Inspector allow
the user to browse the full history of Saved States for a TEST_CASE. In
addition, multiple instances are possible so that the user can view mul-
tiple Saved States side-by-side.

This is implemented in the SAVED_STATE_INSPECTOR class, which is
instantiated with a list of SAVED_STATE objects, and calls the SPYGLASS_
TREE_ITEM class to generate a tree for display.

3.2.3 Implementation of the State Manager

The State Manager is implemented in the class STATE_MANAGER. The
purpose of the State Manager is to provide the code under test a simply
way to save state, that is, to create and store away new SAVED_STATE
objects. Remember that the code under test and its Saved States are
both a part of the TEST_CASE class.

STATE_MANAGER contains a list of SAVED_STATESs in the once fea-
ture Saved_states. Saved_states is visible to TEST _CASE, because TEST_
CASE needs to call wipeout to clear the list at the beginning of the ex-
ecution of the test case. The code under test saves state by calling the
procedure save_state in the STATE_MANAGER provided by TEST_CASE.
save_state then creates a new SAVED_STATE from the arguments and
adds it to Saved_states, so that the code under test only needs to know
about STATE_MANAGER and not SAVED_STATE.

4 The Object Spyglass

The Object Spyglass is an EiffelVision2 component that can be used to
display the structure of an arbitrary object clearly in tree form. An object
is represented as a tree with the object under investigation as the root
node. The Object Spyglass creates a tree using the objects referenced in
the fields of an object. It then recurses through the fields creating new
trees as the user browses deeper into the tree. It is a very versatile tool
for visualizing object state, and could easily be used in other contexts
than software testing.

4.1 Output of the Object Spyglass

The text in a SPYGLASS_TREE_ITEM mimics the Eiffel syntax for declar-
ing manifest constants, meaning that it consists of three parts for basic
types: “(name): (type) = (value)”. Here the (name) part is the field
name, (type) is the dynamic type of the object attached to the field, and
(value) is the value of the field. Basic types are defined as types conform-
ing to NUMERIC, BOOLEAN_REF, CHARACTER_REF, WIDE_CHARACTER_
REF, and STRING.

Basic types values are displayed in an appropriate way, for instance
values for the STRING class are surrounded by double quotes and values
for the CHARACTER_REF class are surrounded by single quotes. These
types are not expanded further and thus make up the leaf nodes in the
tree.

For objects of non-basic types the (value) part of the node text is
empty and the equal sign is omitted. These nodes have zero or more
child nodes, one for each field in the object. Each of these nodes is itself
a SPYGLASS_TREE_ITEM object, and the fields of the object can thus be
explored in exactly the same way as the object itself.

A special case is objects that conform to CHAIN or TUPLE, which have
their items given names such as “chain_item_1" or “tuple_item_1" and
recursively created as SPYGLASS_TREE_ITEM objects.

4.2 Implementation of the Object Spyglass

The Object Spyglass is implemented by having a class SPYGLASS_TREE _
ITEM inherit from the EiffelVision2 EV_TREE_ITEM class. Clients of the
Object Spyglass thus only have to create a normal EV_TREE and then
insert one or more SPYGLASS_TREE_ITEM nodes into it. These nodes
automatically create a suitable text and create child nodes as needed.
There are two different creation routines, make and make_internal.
Both routines accept an object of ANY type and the name of that par-
ticular instance of the object as a STRING. The difference is that make

should be called by the client on the initial SPYGLASS_TREE_ITEM, and
make_internal is only called recursively by other instances of SPYGLASS_
TREE_ITEM. The only difference is that the make routine calls the create_
childrenroutine, which creates the children of the current object recur-
sively.

This is necessary because each SPYGLASS_TREE_ITEM assumes its
children have already been created. The recursion is accomplished by
attaching the routine create_grand_children as an agent to each node’s
expand action. So, each visible node already has children, and when
expanded each node creates its grand children.

In this way the SPYGLASS_TREE_ITEM is able to handle cyclic and self-
referencing objects without problems, and not waste resources creating
parts of the tree the user is not interested in. The children are always
stay one step ahead of what the user can see, and the user is free to
browse as deeply as he or she wants until there are nothing but basic

types.

5 Possible Extentions

Even though the Testing Framework and the Object Spyglass are quite
functional already, there is room for extensions. Three possible exten-
sions will be discussed next.

5.1 Hierarchical Grouping of Test Cases

In the current implementation the Test Driver contains a list of Test
Cases to be executed. One could easily imagine treating the Test Driver
itself as a Test Case.

Upon execution it would then execute its own Test Cases. The result
of the has_failed query could be defined as the disjunction of the has_
failed queries of the Test Cases stored. This would mean that a Test
Driver is considered to have failed when one of its tests have failed.

With such a scheme the Test Driver Window would need to be adapted
accordingly, perhaps using a tree widget to show the tree structure of
the tests. This would be very practical when the system is large for then
each division could have their own Test Cases, driven by their own Test
Driver. Those Test Drivers could then be added as Test Cases and all
Test Cases could be run with just a single invocation of this “Super Test
Driver”.

10

5.2 Interactive Graphical Object Spyglass

Displaying the object graph as a tree is not optimal since the graph is
normally not a tree! Displaying it in a graphical way similar to what
the professional edition of EiffelStudio provides would be better. Here
each object is represented by an oval, with arrows connecting ovals to
illustrate object attachments. In such a system a cyclic structure would
be nicely represented as a cycle in the drawing, and not as an ever-
expanding tree.

Implementing this would require changes in the Object Spyglass and
in the Saved State Inspector which is a client of the Object Spyglass. The
Testing Framework would not be affected.

5.3 Multiple Concurrent Output Channels

With the current design one uses exactly one Test Driver at a time. But
having a design where one could attach multiple Test Driver Monitors to
a single Test Driver could be interesting. One Monitor could implement a
graphical GUI like GRAPHICAL_TEST _DRIVER does whereas another Mon-
itor could store the results about the test run in a database, publish it
on a web page or something similar.

We have actually had such an implementation at one point in the
development, but we removed it since it was unclear how one could keep
the current simple code style (inherit from or create a Test Driver, add
Test Cases, call execute on the Test Driver) without resorting to what can
best be described as a gross hack.

In particular, a Test Driver Monitor which uses the Vision?2 library has
to somehow “hook into” the call to execute on the Test Driver so that it
can call launch in EV_APPLICATION to enter the Vision2 event loop. And
when the event loop terminates, then the Monitor would have to make
sure that the application terminates too, something which again would
require extra hooks in TEST_DRIVER just for this special case.

6 Conclusion

We believe that the Testing Framework and Object Spyglass presented
here live up to the Project Specification given and the Project Require-
ments. Some highlights and limitations will now be discussed.

6.1 Highlights

e The Saved State Inspector allows for browsing the list of saved
states, as well as comparing saved states side-by-side.

11

6.2

Very unobtrusive code for saving state and writing test cases, which
greatly increases user-friendliness (or perhaps more importantly to
the reader, developer-friendliness).

Intuitive Object Spyglass that displays data fields in a pretty Eiffel-
style way.

Extensible code, allowing multiple output channels for testing data
and smooth integration of yet to be developed components.
Limitations

Cyclic and self-referencing objects are not detected, leaving the
possibility of browsing endlessly deep in the Object Spyglass.

While the tree visualization is an excellent way to see data fields, it
would be nice to also have a more robust graphical output showing
the relationships in the class heirarchy

12

	Introduction
	Architectural Overview
	The Testing Framework
	The Test Driver and Test Cases
	The State Manager

	The Object Spyglass

	The Testing Framework
	The Test Driver and Test Cases
	Writing Test Cases
	Executing Test Cases
	Test Driver
	Implementation of the Test Case and Test Driver

	The State Manager
	Saving the State Conditionally
	The Saved State Inspector
	Implementation of the State Manager

	The Object Spyglass
	Output of the Object Spyglass
	Implementation of the Object Spyglass

	Possible Extentions
	Hierarchical Grouping of Test Cases
	Interactive Graphical Object Spyglass
	Multiple Concurrent Output Channels

	Conclusion
	Highlights
	Limitations

