Object Spyglass User’s Guide

Peter Brandt Martin Geisler

Object Oriented Software Construction
Summer Semester 2005

Contents

1 Introduction 1

2 Using the GUI 1
2.1 Program Startup ¢ o i i it 2
2.2 During Test Execution 3
2.3 TestRunFinished 4
2.4 Examining a Saved State, 5

3 Adapting Code for Testing 5

4 C(reating Test Cases 6

5 The Test Driver 7

1 Introduction

A user-friendly GUI is provided for running the Test Cases on the code
under test, and exploring last saved system state in the event of a test
failure. In order to prepare code for testing, it must be adapted to make
use of the state saving functionality. Test Cases must be written, and a
Test Driver must be created to select the Test Cases to run.

The discussion of the Testing Framework in this document is in-
tended to be brief and include examples to help users begin using it
immediately. For a more detailed discussion of the underlying classes
and architecture, please consult the Developer’s Guide.

2 Using the GUI

The GUI as provided by the GRAPHICAL_TEST_DRIVER will now be de-
scribed.

2.1 Program Startup

Graphical Test Driver ml

-Overall Progress
Passed: 0
Failed: O Execute Test Cases
Total: O

~Test Detail
Test name;
Status:

Class:

Routine:

Tag:

Violation Type:

ext Test

Previous Test Examine Saved States

Figure 1: The program when it has just started.

When the program is first run, this is the window the user sees.

The window has two frames labelled “Overall Progress” and “Test
Detail”. When just started only the upper frame is active.

When “Execute Test Cases” is clicked, the test cases will be run on
the code under test.

2.2 During Test Execution

Graphical Test Driver ml

-Overall Progress
Passed: 1
Failed: O Execute Test Cases
Total: 1

JAN [

~Test Detail
Test name: ACCOUNT DEPOSIT TC
Status: Passed

Class: None

Routine: Mone

Tag: Mone

Violation Type: None
MNext Test

Previous Test Examine Saved States

Figure 2: Progress updates when tests are running.

As the test cases are running, a progress bar lets the user know the
progress of the testing. At the same time the number of passed and
failed tests as well as the total number of executed tests is displayed.

At the bottom frame the user sees more detail about the last executed
test — this will most likely update too fast to be noticable, but the user
can browser through all the information when the test run is completed.

2.3 Test Run Finished

Graphical Test Driver - _’ E’

Owverall Progress

Passed: 2

Failed: 1 Execute Test Cases
Total: 3
| [[
Test Detall

Test name: ACCOUNT _DEPOSIT_TC
Status: Passed

Class: Mone

Routine: None

Tag: None

Violation Type: None

Previous Test

Mext Test| Examine Saved States

Figure 3: All tests have been executed.

The test run is finished when the progress bar is completely filed.
The upper frame then shows the statistics for the test run.

The bottom frame is now active, and the user can browse through
the tests with the “Previous Test” and “Next Test” buttons, and see in-
formation about the results of the individual test cases. For each test the
frame displays the name and status (“Passed” or “Failed”) of the test. If
the test has failed, then information about the failure will be displayed
as well: the class and routine name in which the failure occured and any
tag associated with the assertion violation, and finally the type.

The “Examine Saved States” button will open a new window that uses
the Object Spyglass to display information about the states saved during
the execution of the test case.

2.4 Examining a Saved State

Sawved State Inspector . _’ E’

Saved State 2/7
Class: EMPLOYEE
Routine: make

= Routine Arguments
= argumentl: ACCOUNT
balance: DOUBLE REF =0
argument2: STRING = "john Doe"

argument3: INTEGER_REF = 30
= Current Object: EMPLOYEE

name: NONE = Void

salary_account: NOMNE = Void

age: INTEGER_REF = 0

Previous Saved State Mext Saved State

Figure 4: Examining a Saved State.

After clicking the “Examine Saved States” button, the Saved State In-
spector opens with information about the states for the test case in ques-
tion. The window will automatically select last saved state since this is
the one which normally contain the most interesting information.

The class name of the current object saved in the state as well as
the routine name is displayed at the top, followed by a tree in which the
routine arguments and current object can be explored using the Object
Spyglass.

The Object Spyglass will recursively display object information, so
that the user can browse as deep as he or she wants into the routine
arguments or current object fields.

A single test case will likely produce more than one saved state. With
the “Previous Saved State” and “Next Saved State” buttons the user can
browse through the states saved during the execution of the test case.

3 Adapting Code for Testing

In order for the testing framework to work optimally, the state (defined
as current object, routine name, and routine args) needs to be saved

at the beginning of each routine. There is very lightweight code to ac-
complish this shown below, where the items in angle brackets should be
replaced by the actual values. Remember that the code under test should
be written using good design-by-contract techniques, because bugs are
detected using contract violations only.

debug ("save_states")
(create {STATE_MANAGER}) .save_state
(Current, (routine name), (routine args))
end

Here the (routine name) should be substituted with the name of the
calling routine (a STRING) and the (routine arguments) should be sub-
stituted with the arguments of the routine (a TUPLE).

The code example makes use of a debug clause to enable conditional
compilation. To enable the line the .ace file should be modified by
adding the following line in the default group:

debug ("save_states")

The benefits of this type of architecture are great, because there is no
need for the code under test to be any different from the original code.
If the line above is replaced with

disabled_debug ("save_states")

then the code to save states will simply be skipped by the compiler
and wont have any impact on the program.

4 Creating Test Cases

The role of Test Cases is to use the classes under test in such a way that
tests their functionality and adherence to the built in contracts. All test
cases must inherit from the TEST_CASE class and must implement the
execute_test routine. The execute_test routine should create instances
of a the class under test and test its functionality. An example Test Case
class for testing a simple ACCOUNT class is shown below.

class
ACCOUNT _WITHDRAW_TC

inherit
TEST_CASE

feature -- Basic operations

execute_test is
-- Test withdraw in ACCOUNT

local
account: ACCOUNT
do
create account.make (42)
-- Test normal withdrawal
account . withdraw (10)
-- Test withdrawal to empty account
account . withdraw (32)
end

end -- class ACCOUNT_WITHDRAW_TC

5 The Test Driver

The Test Driver is a very simple class whose purpose is to determine
which Test Cases to run and what to output. To easily construct a test
driver, create a class that inherits from either GRAPHICAL_TEST _DRIVER
or CONSOLE_TEST_DRIVER. A discussion of implementing other test
drivers can be found in the Developer’s Guide.

A Test Driver that inherits from GRAPHICAL_TEST _DRIVER will launch
the GUI described above. A Test Driver that inherits from CONSOLE_
TEST_DRIVER will output basic information about the test results to the
console.

All custom Test Drivers must call the make routine to initialize the
ancestor TEST_DRIVER class, and should use the add_test_case routine
to add TEST_CASE objects to the list of Test Cases to run. An example
Test Driver class based on the GRAPHICAL_TEST _DRIVER class is shown
below.

class
TEST_DEMO

inherit
GRAPHICAL_TEST _DRIVER

Create
run

feature -- Initialization
run is
-- Create test cases
do
make
add_test_case (create {ACCOUNT_DEPOSIT_TC?})
add_test_case (create {ACCOUNT_WITHDRAW_TC})

add_test_case (create {EMPLOYEE_RECEIVE_SALARY_TC})
execute
end

end -- class TEST_DEMO

After everything has been coded, make sure that the .ace file points
to the run creation procedure in the Test Driver class.

Two .acefiles, test-demo-Tinux.ace and test-demo-windows.ace,
are delivered along this guide. They are for use under Linux and Win-
dows, respectively, and will execute the run creation procedure in the
TEST_DEMO class described.

	Introduction
	Using the GUI
	Program Startup
	During Test Execution
	Test Run Finished
	Examining a Saved State

	Adapting Code for Testing
	Creating Test Cases
	The Test Driver

