
Fractals with METAPOST

Martin Geisler <gimpster@gimpster.com>

February 16, 2002

METAPOST is probably the best program to use, when it comes to gen-
erate graphics for inclusion in LATEX and pdfLATEX. There’s several features
of METAPOST that helps give it an edge:

• The graphics generated by METAPOST is a particular simple form of
PostScript that is converted on-the-fly when inserted into pdfLATEX.

• You can include labels in your figures, and the labels can come from
LATEX. It’s no problem to label a figure with a complicated mathemat-
ical expression, as METAPOST knows the dimensions of the label and
will position it correctly.

• As the METAPOST language is a programming language, the drawings
you produce with it are precise. No more hand-drawn sketches of
graphs — with METAPOST it’s easy to render the correct graph for a
given function.

I’ve used METAPOST to draw the fractals in the article. Fractals are
interesting objects in their own right, but they’re also interesting to draw
using METAPOST, as they’re defined in mathematical terms.

I’ve drawn three different fractals: Koch Curves in Figure 1 on the fol-
lowing page, Hilbert Curves in Figure 3 on page 3 and Sierpinski’s Sieve in
figure 4 on page 5.

You can find lot’s of information about fractals at this very comprehen-
size webpage: http://mathworld.wolfram.com/topics/Fractals.html.

1

http://mathworld.wolfram.com/topics/Fractals.html

Fractals with METAPOST 2

(a) (b)

(c) (d)

(e) (f)

Figure 1: The first few iterations of a Koch-curve.

Koch Curve
def koch(expr a, b, n) =
begingroup
if n = 0:
draw a--b;

else:
koch(a, 1/3[a,b], n-1);
koch(1/3[a,b], 2/3[a,b] rotatedabout(1/3[a,b], 60), n-1);
koch(2/3[a,b] rotatedabout(1/3[a,b], 60), 2/3[a,b], n-1);
koch(2/3[a,b], b, n-1);

fi
endgroup

enddef;

Copyright c© 2002, Martin Geisler

Fractals with METAPOST 3

Figure 2: This is result of combining three Koch Curves as the sides of a
are a Koch Snowflake.

Hilbert Curve
def hilbert(expr p, length, n) =
begingroup
save curve, T;
path curve;
transform T[];
T[1] = identity scaled 1/2

rotated 90
reflectedabout((0, 0), (0, 1))
shifted (0.5*length, -1*length);

T[2] = identity scaled 1/2;
T[3] = identity scaled 1/2

shifted (0.5*length, 0*length);
T[4] = identity scaled 1/2

reflectedabout((0, 0), (1, -1))
shifted (0.5*length, -0.5*length);

curve = ((0.25, -0.75)*length)--((0.25, -0.25)*length)--
((0.75, -0.25)*length)--((0.75, -0.75)*length)
shifted p;

for i = 1 upto n:
curve := (curve transformed T[1])--(curve transformed T[2])--

(curve transformed T[3])--(curve transformed T[4]);
endfor;
draw curve scaled ((2**(n+1))/(2**(n+1) - 1));

endgroup
enddef;

Copyright c© 2002, Martin Geisler

Fractals with METAPOST 4

(a) (b)

(c) (d)

(e) (f)

Figure 3: The first six iterations of a Hilbert curve.

Copyright c© 2002, Martin Geisler

Fractals with METAPOST 5

(a) (b)

(c) (d)

(e) (f)

Figure 4: The first six iterations of Sierpinski’s Sieve or Triangle as it’s
also called.

Copyright c© 2002, Martin Geisler

Fractals with METAPOST 6

Sierpinski Sieve
def sierpinski(expr a, b, n) =
if n = 0:
fill a--(b rotatedabout(a, 60))--b--cycle;

else:
sierpinski(a, 0.5[a,b], n-1);
sierpinski(0.5[a,b], b, n-1);
sierpinski(0.5[a,b rotatedabout(a, 60)],

0.5[a rotatedabout(b, -60),b], n-1);
fi;

enddef;

Copyright c© 2002, Martin Geisler

