Convex Optimization — Boyd & Vandenberghe

5. Duality

e Lagrange dual problem

e weak and strong duality

e geometric interpretation

e optimality conditions

e perturbation and sensitivity analysis
e examples

e generalized inequalities

Lagrangian
standard form problem (not necessarily convex)
minimize  fo(x)

subject to  fi(z) <

0, 2=1,...,m
0, i1=1,...,p

variable z € R", domain D, optimal value p*

Lagrangian: L : R" x R™ x R” — R, with dom L = D x R™ x R?,
m p
L(z, A\ v) = folx) + > Nifilx) + > vihi(x)
i=1 i=1

e weighted sum of objective and constraint functions
e )\; is Lagrange multiplier associated with f;(z) <0

e 1; is Lagrange multiplier associated with h;(x) =0
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Lagrange dual function

Lagrange dual function: ¢ : R” x R?P — R,

ghv) = inf L(z,\v)

= wlglf) (fo(l’) + Z; Aifi(x) + Z_; VJM‘(@)

g is concave, can be —oo for some A\, v

*

lower bound property: if A = 0, then g(\,v) <p

proof: if x is feasible and A > 0, then

fO(jj) > L(iv)‘al/) > IQ%L(Z',)\,V) = g(A,I/)

minimizing over all feasible Z gives p* > g(\,v)
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Least-norm solution of linear equations

minimize 2z

subject to Ax =1b
dual function
e Lagrangian is L(z,v) = 2Tx + vT(Ax — b)

e to minimize L over z, set gradient equal to zero:
Vol(z,v) =20 +ATv =0 = z=—-(1/2)ATv
e plug in in L to obtain g:
g(v) = L((-1/2)ATv,v) = —%VTAATV — by
a concave function of v
lower bound property: p* > —(1/4)vT AATY — b for all v
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Standard form LP

minimize ¢’z
subjectto Axr =0, x>0
dual function
e Lagrangian is
Lz, \v) = cTe4+vT(Ax—b) -z
= bvt(c+ATv - Nz

e [ is linear in x, hence

Ty ATy —AN4+¢=0

g\ v) = igfL(at,/\, v) = { —00  otherwise

g is linear on affine domain {(\,v) | ATv — XA + ¢ = 0}, hence concave

lower bound property: p* > —bTv if ATv+c¢ >0
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Equality constrained norm minimization
minimize  ||z||
subject to Ax =1b

dual function

Vv ||ATv|. <1

g(y) - 12f(||$|| B VTA:E * bTV) - { —oo  otherwise

where [|v]|. = supy,<; v’ v is dual norm of || - ||

proof: follows from inf,(||z|| — yTx) = 0 if ||y|l« < 1, —oo otherwise
o if [|y|l« <1, then ||z|| — yT2 > 0 for all z, with equality if z =0

o if ||y« > 1, choose x = tu where ||u|| <1, uTy = ||y||« > 1:
|| = y" & = t(|Jull = [lyll.) = —o0 ast— oo

lower bound property: p* > bTv if |[ATy|, <1
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Two-way partitioning
minimize z! Wz
subject to 2?2 =1, i=1,...,n

e a nonconvex problem; feasible set contains 2™ discrete points

e interpretation: partition {1,...,n} in two sets; W;; is cost of assigning
i, j to the same set; —W;; is cost of assigning to different sets

dual function

x

g(v) = inf(zTWa + Z vi(2? — 1)) = infa? (W + diag(v))z — 1Tv

B —1Ty W +diag(v) = 0
o —00 otherwise

lower bound property: p* > —17v if W + diag(v) = 0
example: v = —Apin (W)1 gives bound p* > nApin(W)
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Lagrange dual and conjugate function

minimize  fo(x)
subject to Ax <Xb, Cx=d

dual function

g\v) = inf ; (folz) + (A"A+CTv) e —b" A —d"v)
redom fo

= —f3(=ATXN=CTv) = bT"A—d"v
e recall definition of conjugate f*(y) = sup,cgom s (¥’ — f(2))

e simplifies derivation of dual if conjugate of f( is kown

example: entropy maximization

n

folw) =Y wilogm,  fly) =) e
=1

=1
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The dual problem
Lagrange dual problem

maximize  g(\,v)
subjectto A >0

finds best lower bound on p*, obtained from Lagrange dual function

e a convex optimization problem; optimal value denoted d*

A, v are dual feasible if A = 0, (\,v) € domg

often simplified by making implicit constraint (A, v) € dom g explicit

example: standard form LP and its dual (page 5-5)

minimize Iz maximize —blv
subject to Ax =1b subject to ATv+c>=0
x>0
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Weak and strong duality
weak duality: d* < p*
e always holds (for convex and nonconvex problems)

e can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

maximize —1Tv
subject to W + diag(v) = 0

gives a lower bound for the two-way partitioning problem on page 5-7
strong duality: d* = p*
e does not hold in general

e (usually) holds for convex problems

e conditions that guarantee strong duality in convex problems are called
constraint qualifications
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Slater’s constraint qualification

strong duality holds for a convex problem

minimize  fo(x)
subject to fl( ) <0, i=1,....,m
Az =b

if it is strictly feasible, i.e.,

Jz € int D : fi(x) <0, i=1,...,m, Az =b

e also guarantees that the dual optimum is attained (if p* > —o0)

e can be sharpened: e.g., can replace int D with relint D (interior

relative to affine hull); linear inequalities do not need to hold with strict

inequality, . . .

e there exist many other types of constraint qualifications

Duality

Inequality form LP

primal problem

minimize Tz

subject to Ax <b

dual function

x —00 otherwise

3T T _
g()\):inf((c—l—AT)\)T:z:—bT)\):{ A A At+c=0

dual problem
maximize —bT\
subjectto ATA4+c=0, A>=0

e from Slater’s condition: p* = d* if Az < b for some &

e in fact, p* = d* except when primal and dual are infeasible
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Quadratic program

primal problem (assume P € S”/ )
minimize 2T Pz
subject to Ax <b

dual function

g(\) = inf (" Pz + AT (Az — b)) =

xT

1
—ZATAP_lATA — b7\

dual problem
maximize —(1/4)ATAP7L1ATX — b\
subjectto A >0

e from Slater’s condition: p* = d* it Ax < b for some &

e in fact, p* = d* always
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A nonconvex problem with strong duality
minimize 2l Az +2bTx
subject to zTx <1
nonconvex if A % 0
dual function: g(\) = inf (27 (A + \)x + 2672 — \)
e unbounded below if A4+ A # 0orif A+ Al =0and bg R(A+ )
e minimized by z = —(A + M\ )Tb otherwise: g(\) = —bT (A + \I)Th— X

dual problem and equivalent SDP:

maximize —bT (A + AI)Th— \ maximize —t — A
subjectto A+ A >0 . A+ X b
be R(A+ A) subject to [ BT ; } =0

strong duality although primal problem is not convex (not easy to show)
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Geometric interpretation
for simplicity, consider problem with one constraint fi(z) <0

interpretation of dual function:

g = inf (t4x).  where G ={(fi(x). fol@) |z € D)

SIS
*

Au+t = g(A)\ )

e \u+t = g(A) is (non-vertical) supporting hyperplane to G
e hyperplane intersects t-axis at t = g(\)

Duality

epigraph variation: same interpretation if G is replaced with

A={(u,t) | fi(z) < wu, fo(z) <t for some z € D}
t

A

Au+t = g(N) p
g(N)

strong duality

e holds if there is a non-vertical supporting hyperplane to A at (0, p*)

e for convex problem, A is convex, hence has supp. hyperplane at (0, p*)

e Slater’s condition: if there exist (4,t) € A with @ < 0, then supporting

hyperplanes at (0, p*) must be non-vertical
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Complementary slackness

assume strong duality holds, z* is primal optimal, (A\*,v*) is dual optimal
P
folx®) =g\, v*) = mf ( )+ Z Aj fi() + Z l/l*hl(af;)>
i=1
< fo(z") + Z AL fi(z™) + Z vihi(z
i=1 i=1

fo(z7)

IN

hence, the two inequalities hold with equality
e x* minimizes L(x, \*, ")

o \fi(x*)=0fori=1,...,m (known as complementary slackness):

N> 0= fi(z*) =0, filz*)<0= N\ =0
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Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with
differentiable f;, h;):

1. primal constraints: f;(z) <0,i=1,...,m, hi(x)=0,i=1,...,p
dual constraints: A = 0

complementary slackness: \;f;(z) =0,i=1,...,m

= WD

gradient of Lagrangian with respect to x vanishes:

V fol +Z/\ Vfila +Zyzw

from page 5-17: if strong duality holds and x, A\, v are optimal, then they
must satisfy the KKT conditions
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KKT conditions for convex problem

if &, A, & satisfy KKT for a convex problem, then they are optimal:

hence, fo(%) = g(j\,ﬁ)

if Slater’s condition is satisfied:

x is optimal if and only if there exist A\, v that satisfy KKT conditions

e recall that Slater implies strong duality, and dual optimum is attained

e generalizes optimality condition V fo(x) = 0 for unconstrained problem
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example: water-filling (assume «; > 0)

minimize  — Y7 log(x; + a;)
subjectto >0, 1Tz =1
x is optimal iff z > 0, 172 = 1, and there exist A € R", v € R such that

1
in—l—()éi

+>\i:l/

o ifv<1/a;: \j=0and x; =1/v —
o ifv>1/a;: \j=v—1/a; and z; =0

e determine v from 17z ="  max{0,1/v —a;} =1

interpretation
e n patches; level of patch i is at height «;

e flood area with unit amount of water

e resulting level is 1/v*
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Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

minimize  fo(x) maximize g(\,v)
subject to  fi(z) <0, i=1,...,m subjectto A >0
hi(x) =0, i=1,...,p

perturbed problem and its dual

min.  fo(x) max. g\, v) —uTA—oly
s.t. fz(l‘) < uy, 1= 1, o.M s.t. A =0
hi(.CIS‘)Z’U@', izl,...,p

e x is primal variable; u, v are parameters
e p*(u,v) is optimal value as a function of u, v

e we are interested in information about p*(u,v) that we can obtain from
the solution of the unperturbed problem and its dual
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global sensitivity result

assume strong duality holds for unperturbed problem, and that A\*, v* are
dual optimal for unperturbed problem

apply weak duality to perturbed problem:

= p*(0,0) —uTA\* —vTv*

p*(u,v) > g\, ) —uT A —oTv*

sensitivity interpretation

if A\¥ large: p* increases greatly if we tighten constraint ¢ (u; < 0)
e if A\¥ small: p* does not decrease much if we loosen constraint i (u; > 0)

o if ¥ large and positive: p* increases greatly if we take v; < 0;

if v* large and negative: p* increases greatly if we take v; > 0

e if v small and positive: p* does not decrease much if we take v; > 0;
*

if v small and negative: p* does not decrease much if we take v; <0

(2
*
(2
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local sensitivity: if (in addition) p*(u,v) is differentiable at (0,0), then

. 0p*(0,0) . 0p*(0,0)
)\i B 8uz ’ Vi T 81)2'

proof (for A¥): from global sensitivity result,

* * ) ok
ou; N0 t
a * * t 7;’ _ * ,
p*(0,0) _ . P*(tei, 0) —p*(0 O)g—A;

ou; t 0 t
hence, equality
p*(u) for a problem with one (inequality)
constraint: U

u=0 p*(u)
p*(0) — A'u
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Duality and problem reformulations

e equivalent formulations of a problem can lead to very different duals

e reformulating the primal problem can be useful when the dual is difficult
to derive, or uninteresting

common reformulations

e introduce new variables and equality constraints
e make explicit constraints implicit or vice-versa
e transform objective or constraint functions

e.g., replace fo(x) by ¢(fo(x)) with ¢ convex, increasing
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Introducing new variables and equality constraints

minimize  fo(Az + b)

e dual function is constant: g = inf, L(z) = inf, fo(Az + b) = p*

e we have strong duality, but dual is quite useless

reformulated problem and its dual

minimize  fo(y) maximize bTv — fi(v)
subjectto Ax+b—y =0 subject to ATy =0

dual function follows from

g(v) = inf(foly) —v'y+vT Az +b"v)
Ty
B —fiw)+bTv ATv =0
o —00 otherwise

Duality

norm approximation problem: minimize || Az — b||

minimize  ||y|
subjectto y = Ax —b

can look up conjugate of || - ||, or derive dual directly
o) = nf(ly| + Ty — v Az +57v)
,y

o'y +infy(|lyl| +v"y) ATv =0

—00 otherwise
viv ATv =0, |v|.<1
—0o0 otherwise

(see page 5-4)
dual of norm approximation problem

maximize b'v
subject to ATv =0, |v|.<1
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Implicit constraints

LP with box constraints: primal and dual problem

minimize ¢’z maximize —bTv —1T)X; — 1T\,
subject to Az =1b subjectto c+ ATv+ X =Xy =0
-1=<z=1 AM=0, A=0

reformulation with box constraints made implicit

cl’e —1<z=<1

minimize  fo(z) = oo otherwise

subject to Ax =10
dual function
_ T T _
glv) = —1%1551(0 x4+ v (Az — D))
= —bTv—||ATv + |

dual problem: maximize —bTv — || ATv + ¢||;
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Problems with generalized inequalities

minimize  fo(x)
subject to  fi(z) %k, 0, i=1,...,m
hi(x)=0, i=1,...,p

=k, is generalized inequality on R¥i
definitions are parallel to scalar case:
e Lagrange multiplier for f;(z) <k, O is vector \; € RFi

e Lagrangian L : R" x R"' x ... x R*™ x RP — R, is defined as

m p
L(x, A1, A, v) = fo(x) + Z A fi(z) + Z vihi(z)
i=1 i=1

e dual function g : R* x --- x R*™ x RP — R, is defined as

g1, A, V) = inel%L(SC,)\l,“- , A,y V)
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lower bound property: if A; == 0, then g A1, A, v) < p*

proof: if & is feasible and A EK; 0, then

fo(z) > fo(@ﬂLZ)\?fz(f)JrZVihi(f)

> inf L(z, Aq,.. ., A, V)

zeD
= g()\l,...,)\m,V)
minimizing over all feasible Z gives p* > g(A1,..., A\, V)
dual problem
maximize  g(A1,..., Am, V)
subject to \; k0, 1=1,....m

e weak duality: p* > d* always

e strong duality: p* = d* for convex problem with constraint qualification
(for example, Slater's: primal problem is strictly feasible)
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Semidefinite program
primal SDP (F;, G € SF)
minimize ¢’z
subject to x1 1+ -+ x,F, X G
e Lagrange multiplier is matrix Z € sk
e Lagrangian L(z,Z) = cTax +tr (Z(x1 Fy + - + 2, F, — G))

e dual function

—tr(GZ) tr(FiZ)+c¢; =0, i=1,...,n

9(Z) = igfL(x, Z) = { —00 otherwise

dual SDP

maximize —tr(GZ)
subjectto Z >0, tr(F;Z)4+¢; =0, i=1,...,n

p* = d* if primal SDP is strictly feasible (3= with x1F} + -+ + z,F,, < G)
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