
Assignment Featherweight Java: Bringing Mutable State to

Featherweight Java

Thomas Mølhave∗ Lars H. Petersen†

Abstract

In this paper we present an extension of a very simple
calculus for Java, Featherweight Java. The new dialect
introduces mutable field variables, and brings the cal-
culus closer to the way programs are usually written
in Java. We call this new language AFJ, Assignment
Featherweight Java. Besides the formal specification of
AFJ, we make a soundness proof which is relatively sim-
ple due to the simplicity of AFJ itself. In addition to
the theoretical work we present a Standard ML imple-
mentation of a type-checker for AFJ.

1 Introduction

The simple Featherweight Java(FJ) calculus, as de-
scribed in [Igarashi et al., 2001] is based on a subset
of the syntax of Java. While not semantically a proper
subset of Java, it aims to provide the same feeling. The
semantics of FJ are functional and the evaluation or-
der is nondeterministic. However due to the functional
style and syntactic equivalence, FJ programs compile
and run readily as ordinary Java programs. This pa-
per adds the capability to assign new values into field
variables. To do this we have to be more specific about
the evaluation order to ensure that side-effects happen
in a predictable order. The new dialect is called As-
signment Featherweight Java, or simply AFJ. A strict
design goal of AFJ was to keep the ability to run AFJ
programs on a JVM compiled with an ordinary Java
compiler. In addition we wanted to reuse much of the
constructs of FJ. In order to specify the evaluation or-
der, however, we had to do the semantics differently,
and we have no semantic constructs from FJ in AFJ.
We do however reuse all the typing rules, and intro-
duce two new. In addition to the theoretical definitions
and proofs of soundness we have implemented a work-
ing type-inferrer to gain experience with the practical
typing aspects of AFJ. A digital version of this paper
and the source code for the type-checker can be down-

∗thomasm@daimi.au.dk, University of Aarhus
†aveng@daimi.au.dk, University of Aarhus

loaded at http://www.daimi.au.dk/∼thomasm/TOOL/.
This paper is an exam project for the 2005 version of
the course Types in Object Oriented Languages held by
Mads Torgersen at the Univeristy of Aarhus.

2 Previous Work

Helped by the wide-spread use of Java in commer-
cial applications, including internet banking and other
security-centric areas, the type-safety, or lack thereof,
of Java has seen much research. Since Java is
a huge language researches construct smaller mod-
els and subsets of Java analysing subjects of inter-
est in these. Such models are plenty, and includes
Pizza [Odersky and Wadler, 1997], Middle-weight Java
[Bierman et al., 2003], Featherweight Java and Feath-
erweight Generic Java [Igarashi et al., 2001]. Some
models consider large subsets of Java making the con-
struction of proofs very tedious and technical. Others,
like FJ are small models with gives rise to small and
relatively elegant proofs. Type soundness is proved
in many of the models ([Drossopoulou et al., 1999],
[Igarashi et al., 2001]). The entire Java system in all
its generality, however, is not type-safe according to
[Saraswat, 1997], which gives various examples of how
to cheat the system using class-loaders and modify-
ing internal JVM data structures. However, in local
systems where one can exhibit some kind of control
over the JVM and the programs run using it, type
soundness is still relevant. In this aspect a model like
[Igarashi et al., 2001] is, perhaps, too lightweight since
most people, rightly so, find large-scale functional pro-
gramming in Java too restrictive and/or cumbersome.
This paper aims to make FJ a bit more in-sync with
typical Java use, while still retaining a simple calculus
in which soundness proofs are feasible.

3 Syntax

We need to expand the syntax of FJ in order to be
able to assign into field variables. Our first idea was
to introduce statements to method bodies, this results

1

Assignment Featherweight Java 2

L ::= class C extends C{ C̄ f̄ K M̄}
K ::= C(C̄ f̄){super(f̄); this.f̄=f̄ ;}
M ::= C m(C̄ x̄){ s̄ return e;}
e ::= x | e.f | e.m(ē) | new C(ē) | (C)e
s ::= x.f = e;

Listing 1: First try at a syntax for AFJ.

in the syntax found in Listing 1. In order to do this
the we needed to add change the rule T-Method from
[Igarashi et al., 2001] in order to type-check the meth-
ods, and since a statement has no type we would need
to make up some sort of void type, or type-check state-
ments similar to how methods and classes are verified.

A more elegant way of supporting assignment is to
use the fact that an assignment in Java also is an ex-
pression. The following piece of code is legal Java code
and, as will be shown shortly, also legal AFJ code (as-
suming it is embedded in a legal Pair class).

Pair f(Pair p) {
return (this.fst = p).fst = (fst=p);

}

So instead of adding statements we just add a new
update expression, the value of such an expression,
e0.x = e1, is the value e1. The new expression is the
only one added to the syntax of FJ to form the concrete
syntax of AFJ. However for technical reasons, which
will be clear shortly, we also add yet another expres-
sion (p, C), where p ∈

�
and C is the name of a class.

Such an expression models a pointer to a place, p, in
memory containing an instance of an object of type C.
From now on the metavariable l is a location and l̄ is
a comma-separated list of locations l̄ = l1, l2, . . . , l̄#(l̄),
the empty list is denoted “•”. The final abstract syn-
tax of AFJ is shown in Listing 2. Note that this is
abstract syntax in the sense that the expression (p, C)
is not allowed in concrete programs. We note that the

L ::= class C extends C{ C̄ f̄ ; K M̄}
K ::= C(C̄ f̄){super(f̄); this.f̄=f̄ ;}
M ::= C m(C̄ x̄){ return e;}
e ::= x | e.f | e.m(ē) | new C(ē) |

(C)e | (e.f = e) | (p,C)

Listing 2: Final AFJ Syntax

final syntax does not limit our expressibility in rela-
tion to the first syntax. One can easily map a list of
statements to a list of assignment expressions using an
auxiliary function. The following simple function with
statetements

C f(C1 x1, . . . , Cn xn) {
s̄
return e;

}

can simply be translated into

C g(C1 x1, . . . , Cn xn, Object d1, . . . , Object d#(s̄)) {
return e;

}
C f(C1 x1, . . . , Cn xn) {

return g(x1, . . . , xn, s1, . . . , s#(s̄));
}

The first example is written in the syntax from List-
ing 1, the second example uses the AFJ syntax from
Listing 2, the operations will be executed in the same
order and give the same result.

A class table is kept at all times during the compu-
tation of an AFJ program, it is a mapping from class
names C to class declarations L. We now define an AFJ
program to be the tuple, (CT, e), of a class table and
an expression. As in FJ, we enforce some sanity con-
ditions on the class hierarchy, namely that all classes
appearing in the class declaration in CT are in the do-
main of the table as well. Additionally the are no cycles
(or self-cycles) in the subtype relation induced by CT ,
making the “<:” relation antisymmetric.

4 Type Inference

With the syntax specified we are now in a position to
talk about the types of various AFJ components. The
type inference rules for updates and locations are given
here:

Γ ` e0.fi : C Γ ` e1 : D D <: C

Γ ` (e0.fi = e1) : C
T-Update

Γ ` (p,C) : C T-Loc

In addition to these two rules we reuse all the rules
from [Igarashi et al., 2001] verbatim. For completeness
we have written all these typing rules in this paper as
well, they can be found in Table 1 on the following page.
We also use the sub-typing relations and the auxiliary
functions from FJ, these can be found in Table 2 on
page 4. We note that the type-checking is as simple as
in FJ, and that we maintain the ability to do modular
type-checking.

To verify that our rule T-Update was correct, we
wrote a small test program, shown in Listing 3 on the
following page, and passed it on to the Java compiler.
It showed us that the type of an assignment was indeed
the type of the receiving field.

Assignment Featherweight Java 3

Γ ` x : Γ(x) T-Var

Γ ` e0 : C0 fields(C0) = C̄f̄

Γ ` e0.fi : Ci

T-Field

Γ ` e0 : C0 mtype(m, C0) = D̄ → C
Γ ` ē : C̄ C̄ <: D̄

Γ ` e0.m(ē) : C
T-Invk

fields(C) = D̄ f̄
Γ ` ē : C̄ C̄ <: D̄

Γ ` new C(ē) : C
T-New

Γ ` e0 : D D <: C

Γ ` (C)e0 : C
T-UCast

Γ ` e0 : D C <: D C 6= D

Γ ` (C)e0 : C
T-DCast

Γ ` e0 : D D 6<: C
C 6<: D stupid warning

Γ ` (C)e0 : C
T-SCast

x̄ : C̄, this : C ` e0 : E0 E0 <: C0 class C extends D { . . . }
if mtype(m, D) = D̄ → D0, then C = D and C0 = D0

C0 m(C̄ x̄){ return e0; } OK IN C
T-Method

K = C(D̄ ḡ, C̄ f̄){super(ḡ); this.f̄ = f̄ ; }
fields(D) = D̄ ḡ M̄ OK IN C

class C extends D {C̄ f̄ ; K M̄}OK
T-Class

Table 1: The complete set of FJ typing rules. These, along with T-Update and T-Loc, make up the typing
rules of AFJ.

class C {
public Object bar() {

return new Object();
}

}
class D extends C {

public Object foo() {
return new Object();

}
}
class Test {

public C f;
public Object run() {

/∗ not possible to call foo() below ∗/
return (this.f=new D()).bar();

}
}

Listing 3: Java Code used to verify T-Update.

5 Semantics

When we specify the semantics of AFJ we need to
model the flow of information caused by the computa-

tion, this flow cannot be modelled in the transition sys-
tems used by [Igarashi et al., 2001] since we allow up-
dates to fields. Instead we use the generalised labelled
transition systems as explained in [Mosses, 2003].

5.1 The Transition System

We first define ordinary labelled transition systems.
The basic idea of a labelled transition system is to al-
low labels on transitions, allowing different transitions
between the same states to be distinguished.

Definition 5.1. Let State be a set of states, and let
Label be a set of labels for transitions. The transition
relation for a labelled transition system is a ternary re-
lation: →⊆ (State × Label × State). An existence of
a transition, labelled L, from S to S is indicated by
writing S − L → S′.

In order to better control the relationship between
two relations and their labels we define the generalised
transition system the same way as in [Mosses, 2003]:

Definition 5.2. A generalised labelled transition sys-
tem is a labelled transition system equipped with a bi-

Assignment Featherweight Java 4

C <: C

C <: D D <: E

C <: E

class C extends D { . . . }

C <: D

fields(Object) = •

class C extends D { C̄ f̄ ; K M̄} B m(B̄ x̄){ return e; } ∈ M̄

mtype(m, C) = B̄ → B

class C extends D { C̄ f̄ ; K M̄} m 6∈ M̄

mtype(m,C) = mtype(m, D)

class C extends D { C̄ f̄ ; K M̄} B m(B̄ x̄){ return e; } ∈ M̄

mbody(m, C) = x̄.e

class C extends D { C̄ f̄ ; K M̄} m 6∈ M̄

mbody(m,C) = mbody(m, D)

Table 2: Sub-typing relations and auxiliary functions

nary label Composable on Label and a set Unobs ⊆
Label. The only difference from an ordinary LTS is
that when considering sequences of transitions, the la-
bels on each pair of adjacent transitions are required to
be in the composable relation. Labels U in Unobs are
used for unobservable transitions, and they do not af-
fect composability: when L1 is composable with U and
U is composable with L2 then L1 is composable with
L2. Moreover, for each L there are U1 and U2 such that
U1 is composable with L and L is composable with U2.

In order to use a generalised labelled transition sys-
tem (GLTS) we need to define our labels, specify the
unobservable labels and specify the relation of compos-
able labels. We only have one kind of information in our
labels, the store. The store ST : (

�
, C) 7→ (

�
, C)∗ is a

mapping from a location to a list of locations. It is used
to lookup the list of instances pointed to by the field
variables of a given object instance. For a given class
name C, and mapping ST we define ST +(p,C) 7→ l̄ as
the function gained by picking a not already used inte-
ger p and extending ST with the not-previously bound
mapping (p,C) 7→ l̄. Similarly we define ST/(p,C) 7→ l̄
to be the function gained by changing the mapping of
the location stored at the integer p to l̄.

An AFJ label, L, is then defined to contain two com-
ponents, s and s′, both s and s′ are stores. Conceptu-
ally s is the store before a transition takes place and s′

will denote the store after such a transition. With our
labels defined, we can now complete the definition of

AFJ’s GLTS. We define composability of labels as:

Definition 5.3 (Composability of AFJ labels).
The Labels L1 = {s = ST1, s

′ = ST ′
1} and L2 =

{s = ST2, s
′ = ST ′

2} are composable precisely when
ST ′

1 = ST2.

Two stores are equal if they have the same domain
and map equal arguments to the equal values. We de-
fine unobservable labels as:

Definition 5.4 (Unobservable AFJ labels). A la-
bel L = {s = ST, s′ = ST ′} is unobservable if ST =
ST ′.

A transition e−L → e′ can be written e → e′ if L is
unobservable.

We now only need to create the reduction rules to
complete the specification of AFJ. The reduction rules
are split into to categories, computations and congru-
ence rules. All computations works almost exclusively
on expressions which are locations, while the congru-
ence rules are responsible for transforming all expres-
sions into locations. These rules, which can be seen
in Table 3 on the next page, are quite different from
the ones in [Igarashi et al., 2001] and remove the non-
deterministic evaluation order and replace them with
the actual evaluation order of Java.

Assignment Featherweight Java 5

ST ′ = ((p,C) 7→ l̄) + ST

new C(l̄) − {s = ST, s′ = ST ′} → (p,C)
R-New

e → e′

(C)e → (C)e′
RC-Cast

mbody(m, C) = x̄.e

(p, C).m(l̄) → [l̄/x̄, (p,C)/this]e
R-Invk

e0 → e′0

e0.m(ē) → e′0.m(ē)
RC-Invk-Recv

ST (l) = l̄

l.fi − {s = ST, s′ = ST} → li
R-Field

e0 → e′0

l.m(l̄, e0, ē) → l.m(l̄, e′0, ē)
RC-Invk-Arg

C <: D

(D)(p, C) → (p,C)
R-Cast

e0 → e′0

new C(l̄, e0, ē) → new C(l̄, e′0, ē)
RC-New

ST (l) = l̄ l̄′ = l1, . . . , li−1, l̂, li+1, . . . , l#(l̄)

(l.fi = l̂) − {s = ST, s′ = (l 7→ l̄′)/ST} → l̂
R-Update

e → e′

e.f → e′.f
RC-Field

e → e′

(l.fi = e) → (l.fi = e′)
RC-Update-Arg

e0 → e′0

(e0.fi = e) → (e′0.fi = e)
RC-Update-Rcv

Table 3: Computations and Congruence rules for AFJ.

6 Soundness

We will now prove that well-typed AFJ programs only
get stuck at invalid casts. The proofs follow the style
from [Igarashi et al., 2001] closely, extending and revis-
ing when necessary. We start out with a series of lem-
mas. In all the lemmas we assume that the class table
and the main expression in the formulations, have been
successfully checked by the typing rules.

Lemma 6.1. If mtype(m, D) = C̄ → C0, then
mtype(m, C) = C̄ → C0 for all C <: D

Proof. This is trivially proved by induction of the
derivation of C <: D and mtype(m, D). The proof from
[Igarashi et al., 2001] can be used virtually unchanged,
since our two new typing rules do not deal with meth-
ods..

Lemma 6.2 (Term Substitution Preserves Typ-
ing). If Γ, x̄ : B̄ ` e : D, and Γ ` d̄ : Ā where Ā <: B̄,
then Γ ` [d̄/x̄]e : C for some C <: D.

Proof. This is proved by induction over the typing
rule used. We have preserved all typing rules from
[Igarashi et al., 2001] and refer the proofs of these cases
to that document. We prove the lemma only for our
new type rules.

Case T-Update When the type rule used was T-

Update, e was of the form e0.fi = e1. By T-

Update, we have that Γ, x̄ : B̄ ` e0.fi = e1 : D,

Γ ` d̄ : Ā and Ā <: B̄. Then, by the rule T-

Update we know Γ, x̄ : B̄ ` e0.fi : E0, Γ, x̄ :
B̄ ` e1 : E1 and E1 <: E0. By the induction
hypothesis, Γ ` [d̄/x̄]e0.fi : E′

0, Γ ` [d̄/x̄]e1 : E′
1

where E′
0 <: E0 and E′

1 <: E1. By looking into
the case for T-Field in [Igarashi et al., 2001], we
notice that E′

0 = E0, and we then observe that
E′

1 <: E1 <: E0 = E′
0, so rule T-Update applies

and Γ ` [d̄/x̄]e : E0. We have now proved that
C′ = E0 and C = D = E0, completing the case.

Case T-Loc Straightforward, the type of a location
is defined independently of the environment Γ.

This, along with the rest of the cases in
[Igarashi et al., 2001] completes the proof.

Lemma 6.3 (Weakening). If Γ ` e : C, then Γ, x :
D ` e : C

Proof. As in [Igarashi et al., 2001], we omit this proof
but note that it is based on straightforward induction.
Note that since e was assigned a type in the enviroment
Γ, e cannot depend on x to type-check, and hence, the
addition of an extra identifier to the environment does
not change the resulting type of the expression.

Lemma 6.4. If mtype(m,C0) = D̄ → D, and
mbody(m,C0) = x̄.e, then for some D0 with C0 <: D0,
there exists C <: D such that x̄ : D̄, this : D0 ` e : C.

Assignment Featherweight Java 6

Proof. This is proved by induction on the derivation
of mbody(m, C0). If m ∈ CT (C0), we can use the
rule T-Method since m is OK IN C0, this immedi-
ately gives the desired result. Otherwise, m 6∈ CT (C0)
and we go one step up the inheritance chain using the
rules for mbody and mtype, since mbody(m, C0) and
mtype(m, C0) are defined, the inheritance chain is fi-
nite and the induction hypothesis can be used.

We now need to prove that the labels are used prop-
erly in the rules. We do that by proving that the list
of locations pointed to by a location have one entry for
each field variable of the class of which the location rep-
resents an instance, and that the types of the fields are
consistent with what is stored in them.

Lemma 6.5. If l = (p,C), ST (l) = (p̄, D̄) and
fields(C) = C̄ f̄ then D̄ <: C̄

Proof. This is proved by enumerating the cases where
the store is altered. There are only two rules that alter
the store, R-New and R-Update. The last transition
to update the rule is the last transition with a label L 6∈
UnObs. This is because, by definition of the generalized
labelled transition system, all labels in the deriviation
chain are composable. Now, the unobservable labels
does not change the store - in fact they guarantee it to
be unaltered, so the last update must have been from
a transition with an observable label and R-New and
R-Update are the only rules with such labels.

If the last rule to update l was R-New then l is
the result of new C((p̄, D̄)), rule T-New then gives us
D̄ <: C̄.

Otherwise the last rule to update l was R-Update

on some fi. By T-Update, Di <: Ci, and by applying
this theorem to l before the update, the rest of l̄ also
satisfy D̄ <: C̄.

The following lemma, which is trivial to prove, is not
stated explicitly in [Igarashi et al., 2001], but is needed
to disregard identifiers as a valid case when considering
different expression at runtime.

Lemma 6.6 (Identifiers do not Survive). If e is
well-typed no identifiers are ever encountered during a
computation.

Proof. Since e was well-typed, all identifiers, x have
been looked up in the environment using T-Var. Thus
all identifies appears as formal parameters of a function
and are replaced by R-Invk during a computation.

We now move on to the first of the theorems. The
subject reduction theorem states that the type of an
expression get more specific, in terms of the inheritance
hierarchy, as the expression is evaluated by the semantic
rules.

Theorem 6.7 (Subject Reduction). If Γ ` e : C
and e → e′, then Γ ` e′ : C′ for some C′ <: C

Proof. This is proved by induction on a derivation of
e → e′, casing over the rule used. We only cover some
of the rules for congruence, they are simple to verify.
Assume that Γ ` e : C.

Case R-New e = new C(l̄) e′ = (p, C)

By T-New Γ ` e : C. And by T-Loc we get that
Γ ` e′ : C, completing the case.

Case R-Invk e = (p, C0).m(l̄)
mbody(m, C0) = x̄.e0

e′ = [l̄/x̄, (p, C0)/this]e0

By the rules T-Invk, T-Loc, and T-New we have

Γ ` (p, C0) : C0 mtype(m, C0) = D̄ → C

Γ ` l̄ : C̄ C̄ <: D̄

for some C̄ and D̄. Invoking Lemma 6.4 there are
some D0 and B where B <: C and C0 <: D0 giving
x̄ : D̄, this : D0 ` e0 : B. By the weakening lemma
(6.3) we get that Γ, x̄ : D̄, this : D0 ` e0 : B.
And since term substitution preserves typing (6.2)
there are some E <: B so Γ ` [l̄/x̄, (p, C0)/this]e0 :
E, and since E <: B <: C we know, by the tran-
sitivity of <:, that E <: C. Setting C ′ = C com-
pletes the case.

Case R-Field e = l.fi

ST (l) = l̄
e′ = li

By the rule T-Field, Γ ` l : C0 and fields(C0) =
C̄ f̄ . By Lemma 6.5 Γ ` l̄ : D̄ where D̄ <: C̄,
setting C = Ci and C′ = Di completes the case.

Case R-Cast e = (D)(p,C0)
C0 <: D
e′ = (p,C0)

The assumption C0 <: D implies that the only
way e can be assigned the type C is by the rule
T-UCast. By that rule, and T-Loc C = D, Γ `
e′ = C0, C′ = C0, and using C0 <: D = C we get
that C′ <: C completing the case.

Case RC-Cast e = (D)(e0)
e0 → e′0
e′ = (D)(e′0)

Depending on the rule used to check the type of e
there are three cases:

Subcase T-UCast We know that Γ ` e0 : C0

and C0 <: D. By the induction hypothesis
we know that there exists a type C ′

0, so Γ `
e′0 : C′

0 and C′
0 <: C0. By transitivity we

know that C′
0 <: D, then T-UCast applies

to e′ resulting in D = C′ = C.

Assignment Featherweight Java 7

Subcase T-DCast We know that Γ ` e0 : C0,
D <: C0 and D 6= C0. By the induction
hypothesis we know that there exists a type
C′

0, so Γ ` e′0 : C′
0 and C′

0 <: C0. If C′
0 <: D

we can apply T-UCast to e′, yielding D =
C = C′. If D <: C′

0 and D 6= C′
0 we can

apply T-DCast to e′, yielding D = C = C′.
If neither of the above cases apply then C ′

0 6<:
D and D 6<: C′

0, and we can use T-SCast

with a stupid warning.

Sub-case T-SCast We know that Γ ` e0 : C0,
D 6<: C0 and C0 6<: D. By the induction
hypothesis we know that there exists a type
C′

0, so Γ ` e′0 : C′
0 and C′

0 <: C0. We would
like to use T-SCast on e′, in order to do that
we need to prove that D 6<: C ′

0 and C′
0 6<: D.

Assume for the contrary that D <: C ′
0,

but since C′
0 <: C0, that would imply that

D <: C0, but this is a contradiction to our
assumption so D 6<: C ′

0. We then assume for
the contrary that C ′

0 <: D, but since only
have single inheritance and C ′

0 <: C0, that
would imply that either D <: C0 or C0 <: D
holds, contrary to our assumption.

The above proves that D 6<: C ′
0 and C′

0 6<: D,
so by T-SCast D = C = C ′, with a stupid
warning.

Case R-Update e = l.fi = l̂ e′ = l̂

By the rule T-Update we get that Γ ` l.fi : C,
Γ ` l̂ : C′ and C′ <: C which immediately con-
cludes the case.

Case RC-Field e = e0.f e′ = e′0.f
Rule T-Field gives that Γ ` e0 : C0 and
fields(C0) = C̄ f̄ . By induction we know that
Γ ` e′0 : C′

0 and C′
0 <: C0 for some C′

0. fields(C0)
must be included in fields(C ′

0) since C′
0 <: C0, so

f lies in both of the field lists with the same type,
so e and e′ has the same type by T-Field.

Having proved the subject reduction theorem, we
now move on to state that we never call non-existing
functions or access non-declared field-variables in well-
typed AFJ expressions.

Theorem 6.8 (Progress). Suppose e is a well-typed
expression, then

1. If e includes (p, C0).f as a subexpression then
fields(C0) = C̄ f̄ and f ∈ f̄ for some C̄ and f̄ .

2. If e includes (p,C0).m(d̄) as a subexpression, then
mbody(m,C0) = x̄.e0 and #(x̄) = #(d̄) for some
x̄ and e0.

3. If e includes (p,C0).f = e0 as a subexpression then
fields(C0) = C̄ f̄ and f ∈ f̄ for some C̄ and f̄ .

Proof. We make a proof for each case.

1. If e has (p, C0).f as a subexpression. By well-
typedness e has been validated by T-Field, so
fields(C0) is defined and f ∈ f̄ .

2. If e includes (p, C0).m(d̄) as a subexpression. By
T-Invk mtype(m, C0) is defined, its easy to see
that from the definitions of mbody and mtype,
that if one is defined, so is the other. T-Invk also
ensure that #(x̄) = #(d̄) since C̄ <: D̄ is defined
only when the lists has the same length.

3. If e includes (p, C0).f = e0 as a subexpression the
conclusion follows immediately from the first con-
dition of rule T-Update.

We are now ready to prove, using mainly the subject
reduction and progress theorems that when an expres-
sion is stuck, it is either because we are done and have
computed a location or because we are stuck at an in-
valid cast. Note that if the expression e is a normal
form, none of the semantic rules can be used to evalu-
ate e further.

Theorem 6.9 (AFJ Soundness). If ∅ ` e : C and
e →∗ e′ with e′ a normal form, then e′ is either a lo-
cation (p,D) and D <: C, or an expression containing
(D)(p, C′) where C′ 6<: D.

Proof. This proved by induction, considering the dif-
ferent kind of expression e′ could be.

Assume that e′ is an update, e′ = (e0.fi = e1), since
∅ ` e′ : C the rule T-Update implies that ∅ ` e0.fi :
C and ∅ ` e1 : D for some D. Then, by induction,
when e1 →∗ e′1, e′1 is either a location or contains an
invalid cast. If e′1 contains an invalid cast, we are done.
Otherwise assume that e′1 = l for some location, l. Then
we turn to e0.fi, since e0.fi had the type C in the empty
environment, by rule T-Field we know that ∅ ` e0 :
E0 for some E0. Then when e0 →∗ e′0 we know by
induction that e′0 is either an invalid cast or an location.
Assume for contradiction that e′0 is a location, then by
Theorem 6.8, we can apply R-Update and e′ could not
have been on normal form; thus e′0 contains an invalid
cast. By subject reduction ∅ ` e′ : D, where D <: C.

When e′ is a field access or a method invocation the
reasoning is similar to the above case and is therefore
omitted. If e′ = new C0(ē) then the reasoning is reused
from the above case as well, but since R-New has no
premises, other than the one on labels, another step can
always be taken unless ē contains an invalid cast.

Assignment Featherweight Java 8

If e′ is cast, e′ = (D)e0, we know by induction and
the reasoning above that e0, when reduced to a normal
form, is either a location or an invalid cast, if the latter
is the case, we are done. Thus we assume that e0 re-
duces to a location, l where ∅ ` l : C ′. Now, if C′ <: D
we could use R-Cast, contradicting that e′ was a nor-
mal form, so C′ 6<: D, which is what we wanted.

Last, if e′ is simply a location, subject reduction con-
cludes that ∅ ` e′ : D where D <: C.

By Lemma 6.6 e′ cannot be an identifier, completing
the proof.

We have now shown that we only get a normal form if
we are done and the output is a location, otherwise we
are stuck at an invalid cast. We would now like to state
that these invalid casts cannot appear in programs with
no upcasts or stupid-casts, that property, along with
Theorem 6.9 will enable us to state that all well-typed
programs with no upcasts or stupid-casts will end up
computing a location.

Definition 6.10 (Cast-Safe). We say that an well-
typed program (e, CT) is cast-safe if the rules T-

DCast and T-SCast were not used in the type-
inference of e and CT.

We are now able to prove that the definition of cast-
safe is sane with respect to reductions.

Lemma 6.11 (Cast-Safety is Preserved by Re-
duction). If e is cast-safe and e → e′ then e′ is cast-
safe.

Proof. The proof is a trivial, using Theorem 6.7. For
example, if the rule T-UCast was used on e = (D)e0

with Γ ` e0 : C with C <: D and e0 → e′0 then Γ ` e′0 :
C′ where C′ <: C by Theorem 6.7. Using transitivity
of <: we conclude that C ′ <: D and thus e′ is still
cast-safe.

We are now able to conclude that case-safe programs
always compute a location.

Corollary 6.12 (Cast-Safe Expressions Compute
Values). If e is cast-safe and e →∗ e′ with e′ a normal
form, then e′ is a location l.

Proof. This follows from Lemma 6.11 and Theorem 6.9.
Theorem 6.9 states that e′ is either a location or an
invalid cast, and by Lemma 6.11 e′ is cast-safe and can
therefore not contain any invalid casts.

7 Type-checking

In order to test the typing aspects of AFJ in practice
we have implemented a type-inferrer in Standard ML

of New Jersey (SML/NJ). The Standard ML code has
been tested on SML/NJ, Version 110.0.6.

The type-inference works on the data types found in
Listing 4. Note that the expression datatype does not

datatype classn = CLASSN of string
datatype methodn = METHODN of string
datatype fieldn = FIELDN of string
datatype identifier = IDENTIFIER of string
datatype e = LOOKUP of identifier

| FIELD of e ∗ fieldn
| METHOD of e ∗ methodn ∗ (e list)
| NEW of classn ∗ (e list)
| CAST of classn ∗ e
| UPDATE of e ∗ fieldn ∗ e

datatype methodd = METHODDEF of
classn ∗ methodn ∗ (classn ∗ identifier) list ∗ e

datatype class = CLASS of
classn ∗ classn ∗ (classn ∗ fieldn) list ∗ methodd list

datatype program = PROGRAM of class list ∗ e

Listing 4: The datatypes making up an AFJ program.

include locations, this is due to the fact that locations
only exists at runtime in the abstract syntax tree and
they are never present in user-written code.

The implementation of the inference rules has been
relatively straight forward using the type inference rules
as a starting point. The auxiliary functions were more
tedious to write, but conceptually simple. As seen in
the following listing it is very easy to relate the im-
plementation of the type-checker with the theoretical
specifications of this article.

fun typecheck(g,cl,NEW(c,el)) =
let

val bd = map (fn (a,_) => a) (fields(cl, cl, c))
val bc = map (fn e => typecheck(g,cl,e)) el

in
if subtypel(cl,bc,bd) then

c
else

raise NotASubtype
end

The listing shows the ML code used to infer the type of
an expression of the form “new C(e1)”. First the type
of the field variables are extracted, then the types of
the arguments to the constructer are inferred, and last
it is checked that the arguments are subtypes of the
field variables.

The signature, seen in Listing 5, of the type-checker
shows the functionality of our system. We did not write
a lexer or parser to supplement the type-checker, so we

Assignment Featherweight Java 9

signature TYPECHECKER = sig
val main: program −> classn
val prettyPrint: program −> unit

end

Listing 5: Signature of the type-checker

had to construct the AFJ programs used for testing,
directly in the abstract syntax. This was very tedious
and error-prone. To better understand the abstract
syntax created, we implemented code to print the ab-
stract syntax tree (AST) in a human-readable manner,
this printing is legal Java code. The printed code can
be passed on to a Java compiler and runtime system
for more investigation. The following listing shows the
Java program generated from a simple AFJ program.

public class AFJ2Java {
/∗ Automatically generated Java Code ∗/
public static class C extends Object {

public C() { super(); }
}
public static class D extends Object {

public C sdf;
public D(C sdf) {

super();
this.sdf=sdf;

}
public C set(C x) {

return (this).sdf=x;
}

}
/∗ Execution interface ∗/
public static void main(String[] args) {

Object o=(D)new D(new C()).set(new C());
}

}

The AFJ source program used to generate the above
Java code was

class C extends Object {
C() { super(); }

}
class D extends Object {

C sdf;
D(C sdf) {

super();
this.sdf=sdf;

}
C set(C x) {

return (this).sdf=x;
}

}

and the expression to evaluate using the above classes
was, (D)new D(new C()).set(new C());

The type-checker correctly inferred that the type of
the last expression was D. It also produced a stupid
warning, since the return type of the set function is C
and C is not in a subtype relation with D. Note the
different behaviour of AFJ and Java in this respect.
Our standard SUN Java compiler refuses to compile
the above program solely due to the stupid cast, wheres
AFJ only specifies that a warning should be issued.

This means that we have effectively written a simple
(abstract) AFJ to Java compiler, and since the code was
type-checked by us, there should be no need to enable
the type-checking in the Java compiler. Pedantically,
one should of course prove that our type-checker is a
correct implementation of the type rules. But then it
should also be proved that the CPU and SML/NJ run-
time system is correct, the list goes on, and it is quite
infeasible to do all that in a lifetime.

Along with the source code several test cases are pro-
vided, of interest is the example where an illegal down-
cast passes unnoticed through our type-checker, just
like the Java type-checker. The test cases also include
an example with a stupid cast, and many other AFJ
programs of varying interest.

8 Final Remarks

We constructed AFJ as an extension of FJ with muta-
ble state, and proved that well-typed programs only get
prematurely stuck if they contain invalid casts. Imple-
menting the type-checker helped us understand some of
the design decisions made in FJ and also gave a better
view on how the rules work together.

References

[Bierman et al., 2003] Bierman, G., Parkinson, M.,
and Pitts, A. (2003). MJ: An imperative core calcu-
lus for Java and Java with effects. Technical Report
563, Cambridge University Computer Laboratory.

[Drossopoulou et al., 1999] Drossopoulou, S., Eisen-
bach, S., and Khurshid, S. (1999). Is the Java type
system sound? Theory and Practice of Object Sys-
tems, 5(1):3–24.

[Igarashi et al., 2001] Igarashi, A., Pierce, B. C., and
Wadler, P. (2001). Featherweight Java: A minimal
core calculus for Java and GJ. ACM/Transactions
on Programming Languages and Systems, 23(3):396
– 450.

Assignment Featherweight Java 10

[Mosses, 2003] Mosses, P. D. (2003). Fundemental
conceps and formal semantics of programming lan-
guages.

[Odersky and Wadler, 1997] Odersky, M. and Wadler,
P. (1997). Pizza into Java: Translating theory into
practice. In Proceedings of the 24th ACM Sym-
posium on Principles of Programming Languages
(POPL’97), Paris, France, pages 146–159. ACM
Press, New York (NY), USA.

[Saraswat, 1997] Saraswat, V. (1997). Java is not type-
safe.

